# Working with Nature in the Americas

### **Dr. Todd S. Bridges**

Senior Research Scientist, Environmental Science

U.S. Army Engineer Research and Development Center, U.S. Army Corps of Engineers todd.s.bridges@usace.army.mil

PIANC World Congress Panama City, Panama 5 May, 2018













### **PIANC's Working with Nature Philosophy**

- Developed as a position paper by PIANC's Environmental Commission in 2008
  - Supported by CEDA and IADC
- Endorsed by PIANC Executive Committee
- Aims to provide a practical framework for sustainable navigation infrastructure development





**BUILDING STRONG**®



#### **PIANC Position Paper**

'Working with Nature'

October 2008; revised January 2011

#### What do we mean by 'Working with Nature'?

*Maximising opportunities; reducing frustrations.* Working with Nature is an integrated process which involves working to identify and exploit win-win solutions which respect nature and are acceptable to both project proponents and environmental stakeholders. It is a philosophy which needs to be applied early in a project<sup>1</sup> when flexibility is still possible. By adopting a determined and proactive approach from conception through to project completion, opportunities can be maximised and - importantly - frustrations, delays and associated extra costs can be reduced.

# 1900-2000: The Century of Infrastructure (US)

- 4,071,000 miles of roadway
  - 47,182 miles in the Interstate system
- 149,136 miles of mainline rail
- 640,000 miles of high-voltage transmission lines
- 614,387 bridges
- 90,580 dams
- 155,000 public drinking water systems
- 4,500 military installations
- 926 ports







# **Cuyahoga River; Cleveland, OH**







**BUILDING STRONG**®

# The 1970's: The Decade of Environmental Law and Regulation

- National Environmental Policy Act of 1969
- Clean Water Act 1972
- Marine Protection, Research, and Sanctuaries Act of 1972
- Coastal Zone Management Act of 1972
- Endangered Species Act of 1973
- Resource Conservation and Recovery Act of 1976
- Comprehensive Environmental Response, Compensation and Liability Act of 1980

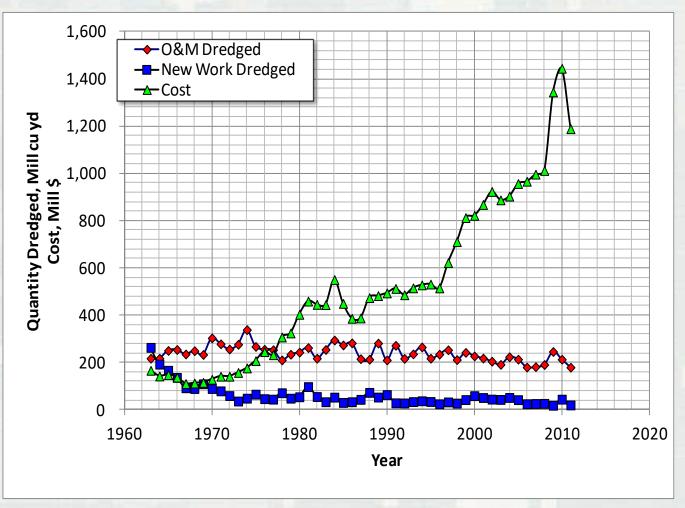






# **USACE Infrastructure**

- 25,000 miles of navigation channel
  - Supporting 926 ports
- 707 dams
  - 75 hydroelectric power facilities
    55,390 miles of shoreline
- 14,500 miles of flood levee
- 236 lock chambers at 192 lock sites
- 929 navigation structures
- 844 bridges










### **The Escalating Costs of Dredging**



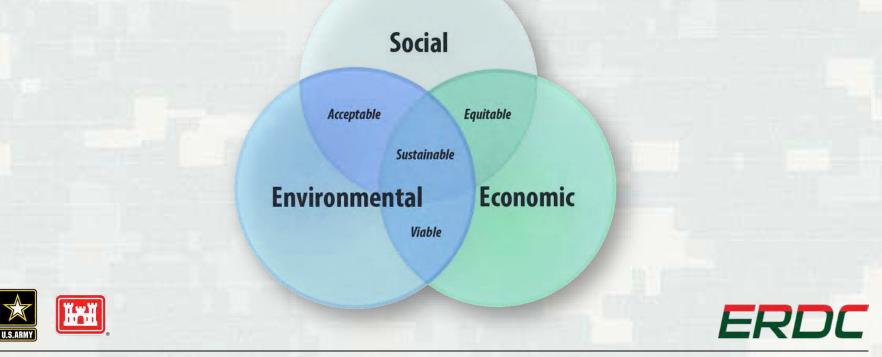


ERDC

**BUILDING STRONG**<sub>®</sub>










**BUILDING STRONG**<sub>®</sub>

## **Sustainability**

Sustainability is achieved by efficiently investing resources to create present and future value



**BUILDING STRONG**®

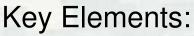
### A "Sustainability Ledger" for Sediment Management

### **Efficiency**

- Reducing sedimentation in channels & reservoirs
- Reducing transport distances for dredged material
- Reducing dredging time
- Expanding operational flexibility
- Linking multiple projects

### **Value Creation**

- Restoring natural sediment processes to sustain landscapes
- New nature-based features that reduce flood risks
- New habitat for fish and wildlife
- New features that provide recreational and other social value
- Budget space for additional infrastructure work






**BUILDING STRONG**®

# **Engineering With Nature**<sub>®</sub>

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes.



- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative processes to organize and focus interests, stakeholders, and partners

























141 US Army Co

**BUILDING STRONG**® www.engineeringwithnature.org

# **EWN**<sub>®</sub> Across USACE Mission Space

- Navigation
  - Strategic placement of dredged material supporting habitat development
  - Habitat integrated into structures
  - Enhanced Natural Recovery
- Flood Risk Management
  - Natural and Nature-Based Features to support coastal resilience
  - Levee setbacks

### Ecosystem Restoration

- Ecosystem services supporting engineering function
- "Natural" development of designed features
- Water Operations
  - Shoreline stabilization using native plants
  - Environmental flows and connectivity





ERDC

**BUILDING STRONG**®

# Value and Use of Natural Systems

### Following Hurricane Sandy:

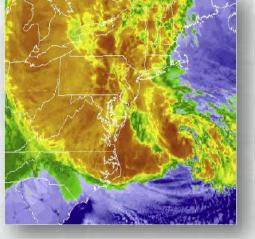
- Risk industry-based tools used to quantify the economic benefits of coastal wetlands
  - Temperate coastal wetlands saved more than \$625 million in flood damages.
  - In Ocean County, New Jersey, salt marsh conservation can significantly reduce average annual flood losses by more than 20%.



#### COASTAL WETLANDS AND FLOOD DAMAGE REDUCTION

Using Risk Industry-based Models to Assess Natural Defenses in the Northeastern USA

October 2016


The Nature Conservancy

> ERCENTENARY RESEARCH FOUNDATION

SANTA CRUZ

Wildlife Conservation Society

ERDC






**BUILDING STRONG**®



### **Enhancing Existing Infrastructure**

### **Ashtabula Harbor**

### **Milwaukee Harbor**



**BUILDING STRONG**®

### **Enhancing Ecosystem Value**



Upper Mississippi River Training Structures: Chevrons



#### Loosahatchie Bar, Memphis






Innovative solutions for a safer, better world

**BUILDING STRONG**®

## **EWN at Soo Locks**





Innovative solutions for a safer, better world

**BUILDING STRONG**<sub>®</sub>

# **Engineering with Natural Materials**



#### National Large Wood Manual

Assessment, Planning, Design, and Maintenance of Large Wood in Fluvial Ecosystems: Restoring Process, Function, and Structure

January 2016















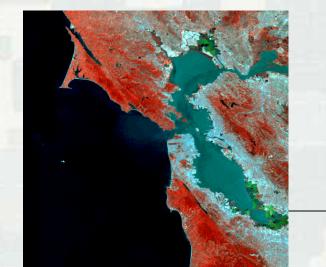
Engineering With Nature Using **Native Plant** Communities



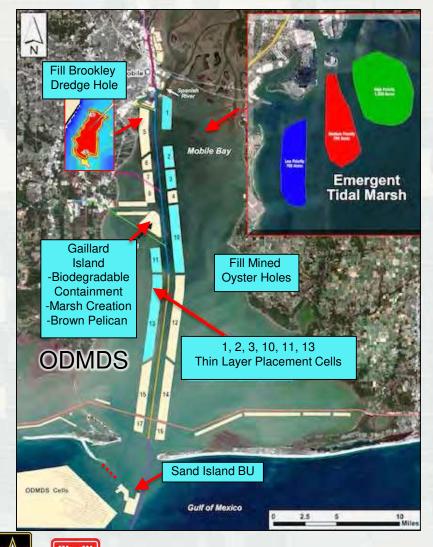




#### www.engineeringwithnature.org




**BUILDING STRONG**®


### Hamilton and Sears Point Wetlands San Pablo Bay, CA







# Mobile Bay, AL



#### WRDA86:

Place <u>all</u> dredged sediments in ODMDS

- 4.0 Mcy/yr, Hopper Dredge, 20-Miles
- Tripled maintenance costs

2014 Decision reversed

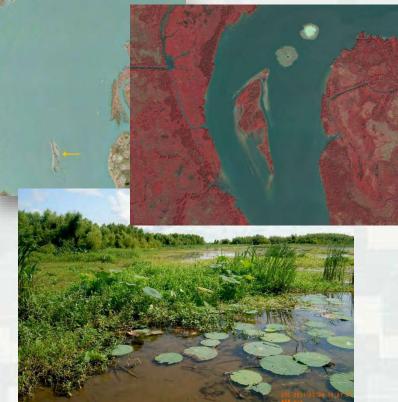
- ERDC Tools and Technologies

- RSM Interagency Work Group

#### \$12M annual value

Thin Layer Placement in Mobile Bay Sand Island Beneficial Use Area (SIBUA) -Downdrift benefits to Dauphin Island -Protect lighthouse Fill dredge holes -Brookley Hole, Oyster Holes Gaillard Island

- Biodegradable Containment
- Marsh Creation
- Brown Pelican


#### Future in-Bay placement:

Thin Layer Placement

-1000 acre emergent marsh

### Horseshoe Bend Island, Atchafalaya River

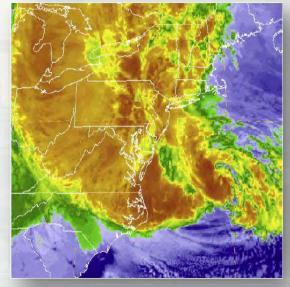
- Options for managing DM via shore-based wetland creation were exhausted
- Strategic placement of sediment (0.5-1.8 mcy/1-3 yrs) was used to create a ~35 ha island
- Producing significant environmental and engineering benefits
- Project Awards:
  - 2015 WEDA Award for Environmental Excellence
  - 2017 WEDA Award for CC Adaption
  - 2017 DPC Award for Working, Building, and Engineering with Nature







# **Hurricane Sandy**


### Storm Impacts and Damages: 22-29 October 2012

### ► Human

- > 286 people killed (159 in the US)
- 500,000 people affected by mandatory evacuations
- 20,000 people required temporary shelter
- Extensive community dislocations continuing today in some areas

### ► Economic

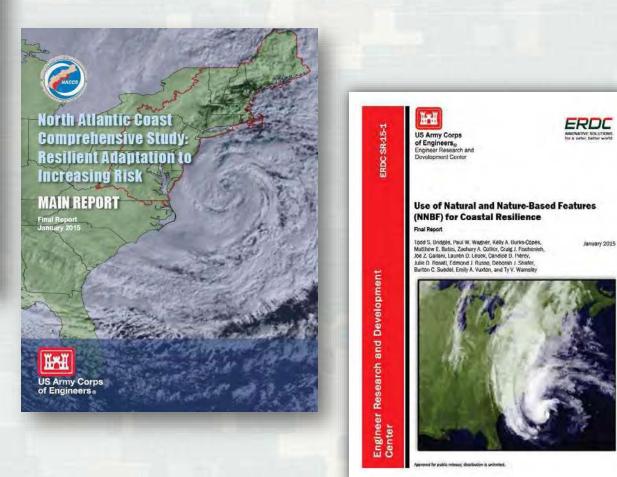
- ▶ \$65B in damages in the U.S.
- 26 states affected (10 states and D.C are in the NACCS study area)
- 650,000 houses damaged or destroyed







### The North Atlantic Coast Comprehensive Study


Coastal Risk Reduction and Resilience: Using the Full Array of Measures



US Army Corps of Engineers Directorate of Civil Works



September 2013 CWTS 2013-3





**BUILDING STRONG**®

Innovative solutions for a safer, better world

http://www.nad.usace.army.mil/CompStudy

### **Engineering Performance: Nature-Based Features Work in Different Ways**

#### Natural and Nature-Based Infrastructure at a Glance

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS: STORM INTENSITY, TRACK, AND FORWARD SPEED, AND SURROUNDING LOCAL BATHYMETRY AND TOPOGRAPHY



Dunes and Beaches **Benefits/Processes** Break offshore waves Attenuate wave energy Slow inland water transfer

Performance Factors Berm height and width Beach Slope Sediment grain size and supply Dune height, crest, width Presence of vegetation



Vegetated Features: Salt Marshes, Wetlands, Submerged Aquatic Vegetation (SAV) **Benefits/Processes** Break offshore waves Attenuate wave energy Slow inland water transfer Increase infiltration

Performance Factors Marsh, wetland, or SAV elevation and continuity Vegetation type and density



**Oyster** and **Coral Reefs** Benefits/Processes Break offshore waves Attenuate wave energy Slow inland water transfer

and roughness



Maritime Forests/Shrub Communities **Benefits/Processes** Wave attenuation and/or dissipation Shoreline erosion stabilization Soil retention

Performance Factors Vegetation height and density Forest dimension Sediment composition Platform elevation

Performance Factors Reef width, elevation

Islands **Benefits/Processes** Wave attenuation and/or dissipation Sediment stabilization

Barrier

Performance Factors Island elevation, length, and width

Land cover Breach susceptibility Proximity to

mainland shore

### **Resilience Through Integrated Solutions**

"The USACE planning approach supports an integrated strategy for reducing coastal risks and increasing human and ecosystem community resilience through a combination of the full array of measures: natural, naturebased, nonstructural, and structural. This approach considers the engineering attributes of the component features and the dependencies and interactions among these features over both the short and long term. It also considers the full range of environmental and social benefits produced by the component features."

Coastal Risk Reduction and Resilience: Using the Full Array of Measures



US Army Corps of Engineers Directorate of Civil Works



September 2013 CWTS 2013-3



*Coastal Risk Reduction and Resilience*. Todd Bridges, Roselle Henn, Shawn Komlos, Debby Scerno, Ty Wamsley, and Kate White. CWTS 2013-3. Washington, DC: Directorate of Civil Works, US Army Corps of Engineers.



**BUILDING STRONG**®

Innovative solutions for a safer, better world

http://www.nad.usace.army.mil/CompStudy

# USACE Philadelphia District: Back Bay EWN



Mordecai Island





**BUILDING STRONG**®

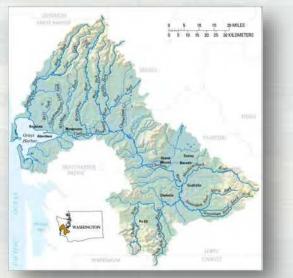


# **Wave Attenuation by Vegetation**



**BUILDING STRONG**<sub>®</sub>

### **Dutch Sand Motor**




2011 construction 21.5 mcm of sand



**BUILDING STRONG**®

# **Chehalis Basin Floodplain Restoration**





RAMBOLL

Flood Mitigation Project Anticipated Completion: Fall 2015 Confederated Tribes of the Chehalis Reservation

ENVIRON

State Office of Financial A

. Trucking & Excav

(360)508-8227





**BUILDING STRONG**®

### **Collaboration with Federal Agencies**

USACE – NOAA Collaboration Workshop: Natural and Nature-Based Features, Charleston, SC; 1-3 March 2016



### USACE/NOAA-NMFS Collaboration Workshop Engineering With Nature, Gloucester, MA; October 5-6, 2016





www.engineeringwithnature.org (NNBF)



**BUILDING STRONG**®

### Collaboration with the Private Sector: Caterpillar Inc.

- Restoring Natural Infrastructure Summit; November 4<sup>th</sup>, 2015; New York City
- Natural Infrastructure Initiative USACE Collaboration Work Streams
  - 1. NI Opportunity Evaluation Tool. Capitalizing on enterprise-level capability: CE Dredge DST
  - 2. Evaluation and Decision Making
  - 3. Field Application and Demonstration





**BUILDING STRONG**®

Innovative solutions for a safer, better world

http://www.caterpillar.com/en/company/sustainability/natural-infrastructure.html

### Coastal Science and Engineering Collaborative: Texas A&M Engineering With Nature<sub>®</sub> Curriculum

- Collaborating with Texas A&M to develop graduate curriculum in Engineering With Nature
- Spring 2018 Engineering With Nature Seminar
  - OCEN 485/685 Engineering With Nature
  - The course is scheduled for Mondays, 12:40 to 13:30. Jan 22 -- May 7









### EWN and Landscape Architecture Research Collaboration

#### **Producing** Efficiencies



Exploring ways to incorporate natural infrastructure into projects (potential to reduce construction/repair cost), reduced mitigation cost, increase beneficial use of dredge material, etc.

#### Using Natural Processes



Increase vegetation in project master plans – improve water quality, flow characteristics, and flood storage; improve air quality; reduce urban heat through shading.

#### Broadening Benefits

Improved ecosystem sustainability; improved hazard mitigation; increased recreational, cultural and educational opportunities.

#### Promoting Collaboration



SWG, ERDC, Cornell, Auburn, USACE LA COP, and Members of Dredging Research Collaborative (DRC).

**R&D:** Social benefits and metrics produced by projects. Document followup underway in Coastal Texas Protection and Restoration Feasibility Study; incorporating EWN/LA into Existing Infrastructure.







#### Innovative solutions for a safer, better world

**BUILDING STRONG**®

### International Guidelines on the Use of Natural and Nature-Based Features for Sustainable Coastal and Fluvial Systems

Purpose: Develop guidelines for using NNBF to provide engineering functions relevant to flood risk management while producing additional economic, environmental and social benefits.

- Publish NNBF technical guidelines by 2020:
  - Multi-author: government, academia, NGOs, engineering firms, construction companies, etc.
  - Addressing the full project life cycle

E WORLD BANK

- Guidelines in 4 Parts
  - Overarching
  - Coastal Applications
  - Fluvial Applications
  - Conclusions





# **Toward Sustainable Infrastructure**

- Opportunities to scale-up progress?
- How leverage partnerships across sectors and interests?
- How to consider the diverse benefits provided projects and systems?
- How to evaluate, design for and adaptively manage the engineering performance of projects
- What form of guidance is needed for different functional areas?
- How to incentivize, institutionalize and codify progress?







How sustainability gets done: humans working with other humans, across organizational boundaries, to <u>co-develop</u> solutions.











**BUILDING STRONG**<sub>®</sub>

# **1906 San Francisco Earthquake**









**BUILDING STRONG®** 

II S ARM

### **Agnews State Hospital, 1906**



**BUILDING STRONG®**