

SHORT COURSE "WORKING WITH NATURE": CASE STUDY "KREETSAND/SPADENLANDER BUSCH"

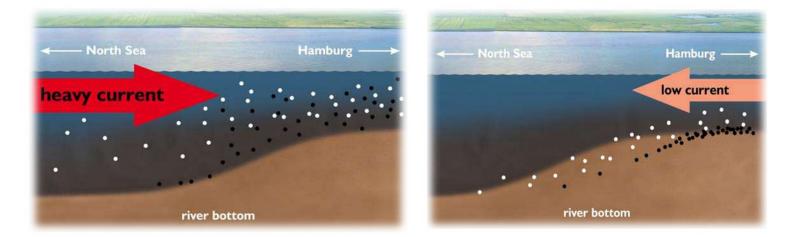
Kirsten Wolfstein, Hamburg Port Authority, Germany

Elbe catchment area

- 1.100 km river length in total.
- International catchment, source in Czech Republic.
- Estuary: 170 km in northern Germany.
- Sediments reach the estuary from North Sea and upper catchment.

Port of Hamburg

- Third largest port in Europe (TEU)
- Largest port in Germany
- 250.000 depending jobs in Germany
- 10.000 ship calls p.a.
- ~120 km distance to the North Sea
- Tidal influence


Challenge: Federal administration and diverse uses



Challenge: High amounts of sediments due to tidal pumping

..results in sedimentation in anabranches, embankments and the port

How to address challenge of high sedimentation?

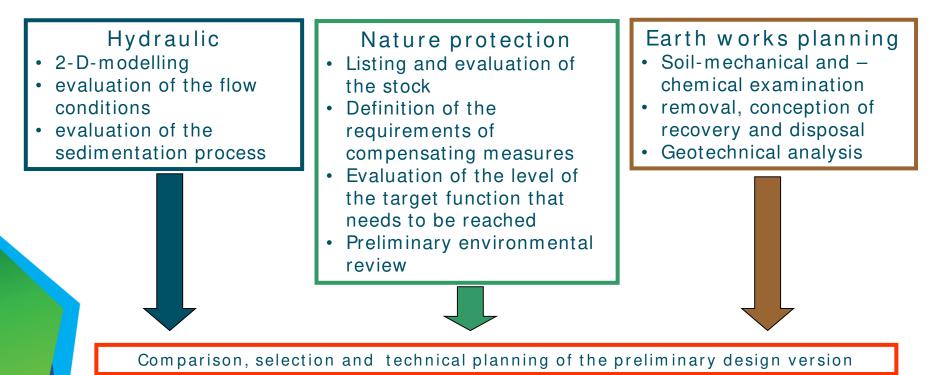
Apply 'Working with Nature' concept for river engineering measure
 -> Measure should equally serve several purposes (win-win situation)

- Reduce tidal energy & weaken 'tidal pumping' effect by creating additional tidal volume.
- Create valuable **natural habitats**, e.g. for endemic plant 'Elbe Water Dropwort' (*Oenanthe conioides*), protected by EU legislation.
- Recreation for residents. Increase knowledge & awareness on tidal systems, sediment management and estuarine habitats.

Location

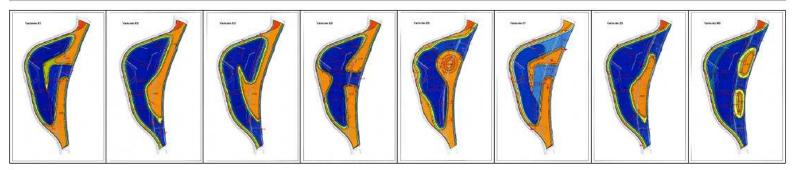
- Within city area of Hamburg.
- Subject to dike realignment in 1999.
- Excavation of high lying new foreland was not executed -> no tidal action
- Planning process started in 2008.

Before starting planning phase -> understand environment & natural processes!

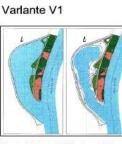

-> Detailed analysis, field work and desk studies (modelling of possible design variations).

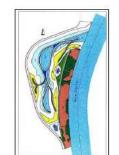
Before the start of the works: Planning process

Composition and evaluation of the preferential alternatives

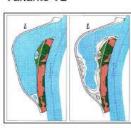


Planning process: selection of alternatives & modelling

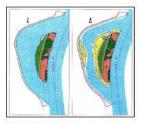

 Vorauswahl von 8 Varianten im Hinblick auf die zu erwartenden Unterschiede bei der Strömungs- und Sedimentationsmodellierung E1, E2, E3, E5, E6, Z1, Z3, M3


7. "Überschlägliche" Modellierung der vorausgewählten Varianten, Ergebnisdiskussion

8. Verbal-argumentative bzw. rechnerische Bewertung der Varianten anhand der Kriterien gemäß Punkt 5


9. Auswahl von 3 Vorzugsvarlanten

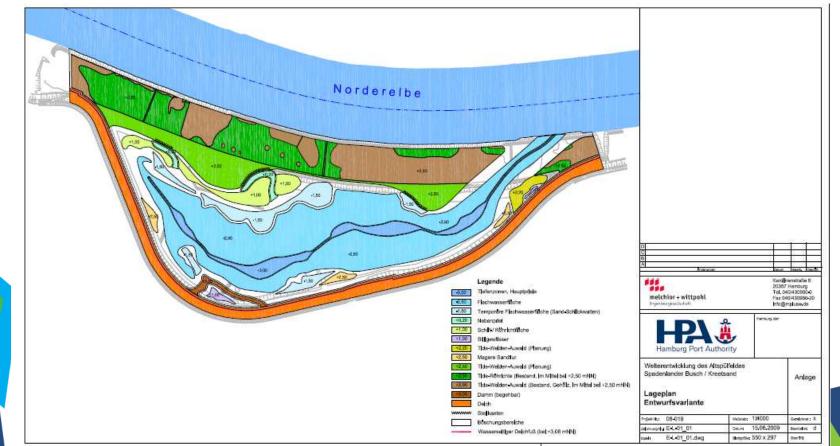
Einstauflächen bei MTHw bzw. MTNw


Varlante V2

Einstauflächen bei MTHw bzw, MTNw

Varlante V3

Einstaufjächen bei MTHw bzw. MTNw



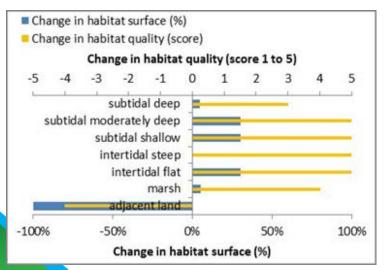
Planning process: detailed planning of selected version

One-sided connection to the northern branch of the Elbe

-> best possible combination of hydraulic efficiency and nature conservation objectives.

Nature should do its work

- Project creates an initial status.
- Then natural processes should form the site.
- Design: let nature help with the sediment management.
- But: maintenance work necessary approx. every 5 years (remove excessive sediments).



Impact on Ecosystem Services (ES)

- Assessment: based on importance of different habitat types for ES delivery.
- Results depend on habitat changes caused by measure.

- -> Measure will generate positive effect on ES delivery -> Habitat type with higher importance created
 - (adjacent rural land -> estuarine habitats)

Results: targeted ES

- 1. "Water quantity regulation: dissipation of tidal & river energy": less effect than expected
- Biodiversity, Cultural services (Inspiration f. culture, art and design; Information for cognitive development, Regulating service: Erosion & sedimentation regulation (by water bodies): more than expected or unexpected

Communication

- Communication concept.
- Stakeholder involvement started in planning phase.
- Local citizens, NGO's, relevant authorities were periodically and personally addressed.
- Broader public was addressed during construction process.

- After completion, no trespassing, but public footpaths.
- Presentation boards for additional information.

Current state of the works

- Planning approval & start of the works: spring 2012.
- Shallow water area: removal of ~ 2 mill. m³ of soil material.
- 1/4 of contaminated soil: disposed in specific landfill.
- Material is utilized in port construction measures or sold to market.
- Works started with dry activities on land, continued in layers influenced by ground water.
- Completion depends on utilization of removed soil, estimated in 2020.

Monitoring after completion

- Yearly base during the first 6 years.
- Followed by investigation every 5 years.
- Includes:
 - bathymetry & topography of shores,
 - development of different habitat types,
 - development of 'Elbe Water Dropwort' and fish species.

Conclusions and lessons learned

+: Integrated approach to meet several objectives

- Let nature help with sediment management.
- New valuable habitats within Elbe nature conservation area (EU Birds & Habitats Directive).
- Residents, NGO's and administrations involved: high acceptance.

- 1

- Estimated costs of > 60 mill. € exceed planned budget.
- Maintenance work necessary -> disturbance & removal of fauna.
 Not the best location for "Dissipation of tidal and river energy"

-> Find other areas!

- German system of federal states -> project implementation in Hamburg City area.
- Pilot project -> better understanding of estuarine system & effects of measures.
- > Monitoring and evaluation will assess effectiveness.

How further?

- More areas have to be found!
- BENEFITS FOR ECONOMY, ECOLOGY AND SOCIETY: PENERING INEERING MEASURES IN THE ELBE ESTUARY RIVER ENGINEERING MEASURES IN THE ELBE Difficult process due to strong federal states and

Thank You very much! Any questions?

Dr. Kirsten Wolfstein Hamburger Port Authority

Neuer Wandrahm 4 20457 Hamburg Tel. 0049 (0)40 42847 -3053 E-Mail: kirsten.wolfstein@hpa.hamburg.de

Task: Accessibility of the port

"How can the Elbe estuary at the same time be used as a shipping channel and entrance to the Port of Hamburg – and the interests of different stakeholders met as well as natural characteristics be kept?

- Safeguard waterdepths
- Reduce amount of dredged material
- Minimise effects on nature

Sediment management: "Strategy house" of HPA

Sedimentmanagement at the Elbe estuary		
Quality improvement	Reduction of (fine) sediments	
1. Remediation <i>Identify and clean</i> <i>pollution sources</i>	2. Maintenance <i>Relocation of sediments</i>	3. River engineering Manage tidal dynamics - create space for the river
- Treatment and disposal on land: Cleaning of upstream located polluted sites	 In the estuary and North Sea Landfills 	 Pilotproject Kreetsand Estuary partnership "Forum Tideelbe"

4. Communication & acceptance

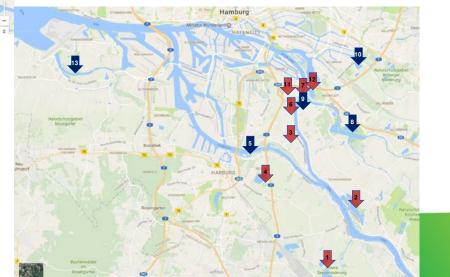
5. Innovation

Next steps

- More areas have to be found!
- Difficult process due to federal system and various stakeholders' interests!

Broad communication process -> estuary partnership "Forum Tideelbe" founded in 2016

- 40 stakeholders.
- Platform for stakeholder information & consultation of responsible administrations.
- Trustbuilding & exchange of interests.
- Working groups for ranking further river engineering measures.



First results and future procedure

- Pre-ranking of 23 potential measures completed.
 Criteria:
 - 1. Contribution to reduction of tidal energy
 - and upstream sediment transport,
 - 2. Establishment of valuable habitats,
 - 3. Feasibility.

