

Coastal erosion: a worldwide problem

- a serious threat along many coastlines
- will increase due to human-induced changes and climate change (sea level rise, increased storminess)
- Oosterschelde (SW Netherlands)
 - Fast erosion of tidal flats due to infrastructural works

Oosterschelde

Total surface, km²: 351

Tidal flats, km2: 118

"Sandhunger" Oosterschelde

Consequences for nature and safety

 Loss of intertidal foraging habitats for birds and resting areas for seals

Loss of protecting foreland (mudflats, marshes)

for dikes

Building with Nature solutions

Short and medium term solutions:

Stabilize intertidal areas

- Sand nourishments for maintaining tidal flats
- Coastal protection by applying the concept of ecosystem engineers

Long term solutions: sand import

Nourishment Galgeplaat

Monitoring mussel beds

Argus-bio

Nourishment strategies

- Locations
- Shape
- Volumes
- Frequency

Building with Nature solutions

Short and medium term solutions:

Stabilize intertidal areas

- Sand nourishments for maintaining tidal flats
- Coastal protection by applying the concept of ecosystem engineers

Long term solutions: sand import

Ecosystem engineering

- EE = "modification of the abiotic environment by biological activity" (Jones et al. 1994)
- biologically mediated modification of the abiotic environment has a major impact on the structure, function, and biodiversity of a wide range of ecosystems

The concept of ecosystem engineers

Coastal protection by applying the concept of ecosystem engineers

Ecosystem engineers such as reef building oysters can protect tidal flats from erosion, reduce wave energy, trap sediment, ...and protect dikes

The use of ecosystem engineers in EDD

the use of ecosystem engineers is successful when they are self-sustainable and stabilize tidal flats => artificial oyster reefs seem promising as substrate

The use of ecosystem engineers in EDD

To become self-sustainable reefs, oysters need to settle, grow, survive and reproduce at the prevailing hydrodynamic

conditions

⇒grow out to a living reef (and provide habitat)

Pilot Ecosystem engineers

testing of different materials and cages in small-scale experiments => use of gabions most promising
Small scale pilot June 2009: gabions filled with oyster shells

± 100 m², 11000 kg oyster shells

Small-scale pilot: elevation changes

Detailed height measurements along transects

Small-scale pilot: elevation changes

Sedimentation behind reefs

Small-scale pilot: shell stability

Movement of oyster shells inside artificial reefs

Small-scale pilot: settlement of oyster

larvae

Small scale pilot: summary

- Promising results with small artificial oyster reefs after one year:
- Gabions with oyster shells are stable structures
- Local sedimentation and reduced erosion observed behind reefs, surrounding tidal flat further eroding (± 2cm)
- Oyster larvae settle and grow on artificial reef

Upscaling 2010: large scale pilot

Large scale pilot with three reefs of 200 x 10 meters

First attempts with harness

EcoShape

Adopted methodology

Adopted methodology

EcoShape

Adopted methodology

EcoShape

shells

Monitoring programme

- Reef stability, oyster shell stability, algal coverage,
- Oyster recruitment, survival and growth
- (Hydro)morphological and ecological impact on tidal flat

building with nature

A combination of measures

Cascade of ecosystem engineers

Cascade of ecosystemNourishment of tidal flats

More ecosystem engineers in BwN programme:

Sea grass

Mangroves

Biogeomorphic succession of mangroves

PhD research: Thorsten Balke

Concept of biogeomorphic succession by Corenblit (2007) modified for mangroves

Flume tests on early establishment

building with nature