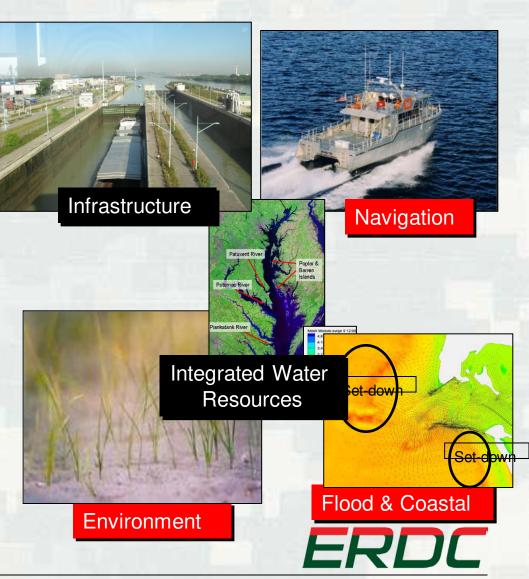
Navigation RD&T

Jeff Lillycrop Technical Director

Advancing Science and Technology in Support of Sustainable Solutions to America's Water Resources Needs

20 Aug 2013 RSM Annual Meeting

US Army Corps of Engineers BUILDING STRONG_®



CW R&D at a Glance

USACE Business Areas

- <u>Navigation</u> and Hydropower
- Flood and Coastal, Water Supply, Emergency Management
- <u>Environment</u> Restoration, Regulation, Stewardship

FY13 Business Lines

•

CW RD&T Technology Transfer

Summary of FY12 Products

38 Wiki Pages

55 Webinars

161 Tech Reports and Tech Notes

207 Conferences & Workshops

66 Software Releases

58 Journal Articles

61 Hosted Workshops

45 DOTS requests / 18 Districts

45 WOTS requests / 20 Districts

105 Federal Agencies Collaborations

92 State & Stakeholder Collaborations

79 University Collaborations

4 Guidance Documents

CW

RD&T

A Patent

Corps Navigation Mission

Provide safe, reliable, efficient, effective and environmentally sustainable waterborne transportation systems for movement of commerce, national security needs, and recreation.

Innovative solutions for a safer, better world

BUILDING STRONG®

USACE Navigation Assets

COASTAL NAVIGATION

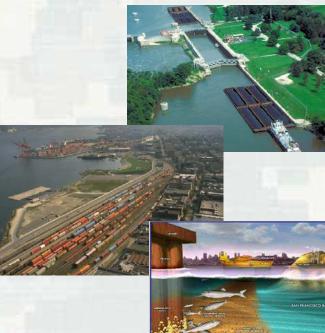
1067 Navigation Projects19 lock chambers13,000 miles of channels929 navigation structures844 bridges

INLAND NAVIGATION

27 Inland River Systems207 lock chambers @ 171 lock sites12,000 miles of inland river channels

Intracoastal Waterway

BUILDING STRONG®


Navigation RD&T Guiding Documents

BUILDING STRONG®

Navigation RD&T Strategic Needs & Priorities FY13

- Extend the useful life of existing navigation infrastructure
- Operate and manage national waterborne transportation assets as an integrated system
- Optimize and prioritize channel availability for commercial freight movement
- Engineering with nature to enhance ecosystem and project processes, benefits and services
- Implement eNavigation throughout the National MTS
- Deliver sound engineering and scientific solutions to align with the Planning Modernization initiative

Navigation RD&T Portfolio

Dredging Operations and Environmental Research Dr. Todd Bridges

Coastal Inlets Research Program

Dr. Julie Rosati

Navigation Structures

Navigation Systems Mr. Eddie Wiggins

Regional Sediment Management Ms. Linda Lillycrop

Monitoring Completed Navigation Projects Dr. Lyn Hales

Dredging Operations Technical Support

Ms. Cynthia Banks

Inland Electronic Navigation Charts

Dr. Bob Mann / Ms. Denise LaDue

National Coastal Mapping Program

Ms. Jennifer Wozencraft

BUILDING STRONG®

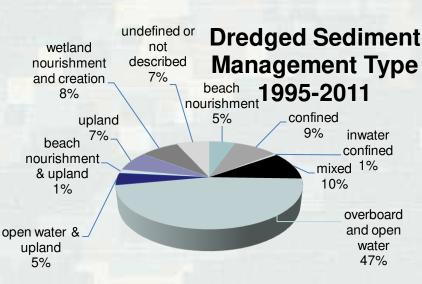
Dredging Operations Environmental Research (DOER)

Dr. Todd S. Bridges, ST Senior Research Scientist, Environmental Science

US Army Corps of Engineers.

Beneficial Use of Dredged Material John Childs

Problem


- Corps generates/ manages
 ~250E6+ cy of DM each yr
- BU is necessary for sustainability of Nav. program
- IWR tracks DM management, but not beneficial use
- Funding is limited and incentives are needed for BU

Objective

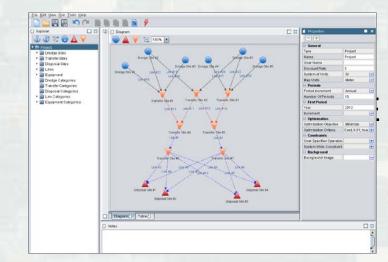
- Increase BU
- Track DM Management and BU
- Technology transfer across Districts
- Identify feasible and cost effective management controls and engineering controls to allow for BU

Identify BU incentives

Approach

- Bring together previous and current research into Guidelines
- Quantify environmental (and social) benefits
- Occupy RSM and EWN
- BU is a primary goal of the National Dredging Team

Innovative solutions for a safer, better world


BUILDING STRONG®

Dredged Material Disposal Management Linkov & Bates

- Problem
 - Multi-objective dredging planning & sediment management is complex
 - Existing optimization software was archaic, limited, and hard to use

Objective

- Improved user interface
- Improved multi-objective optimization functions
- GIS & decision support
- Open source software that is easy to maintain

Approach

- Three modules (GIS,
 - Optimization, Decisions)
- Visual, customizable, interactive user interface
- Java code built on open source optimization tools

Engineering With Nature Thomas J. Fredette

Problem

•USACE faces multiple challenges that affect delivery of safe and reliable navigation projects. These include:

- Time and costs required to implement and operate projects increasing due to inter-agency coordination and consultation, regulatory compliance issues, market pressures, etc.

- USACE infrastructure and operations are viewed by many stakeholders as being in conflict with environmental and social interests.

- Environmental expectations and regulatory requirements for projects continue to steadily increase.

- The effective budget for the USACE has been decreasing.

Objective

- Document, demonstrate, and monitor EWN sites.

- Highlight how these infrastructure development efforts provide economic, environmental, and social benefits – in a sustainable way – producing a "triple win".

- Enable greater support by and collaboration with our partners and stakeholders by illustrating case studies that use natural processes to achieve a broad range of project objectives.

Support and advance the USACE Environmental Operating Principles and Civil Works Strategic Plan.

Approach

- Conduct technical data/literature search to identify existing projects.

 Survey USACE Districts to identify and document existing projects and their benefits.

- Develop an Interactive Geographic Site Database.

 Evaluate identified projects and develop technical approaches for improving implementation and performance.

Innovative solutions for a safer, better world

BUILDING STRONG®

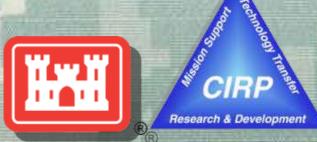
ERDC **Coastal Inlets Research Program**

Engineer Research & **Development Center**

Julie Dean Rosati

Program Manager

Jeff McKee


HQ Navigation Business Line Manager

Jeff Lillycrop

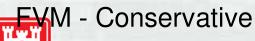
Technical Director

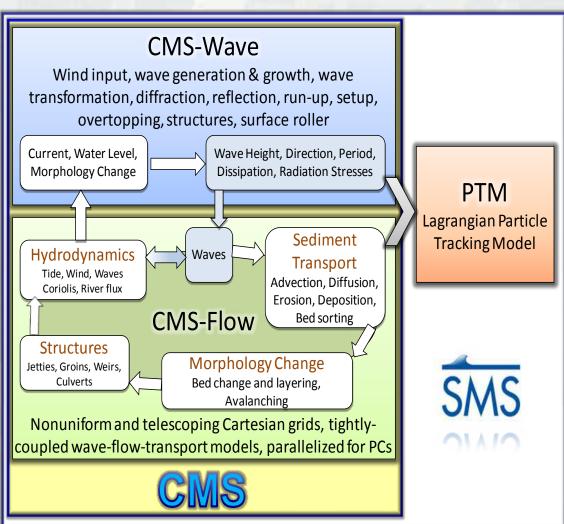
Eddie Wiggins

Associate Technical Director

US Army Corps of Engineers BUILDING STRONG

Coastal Modeling System



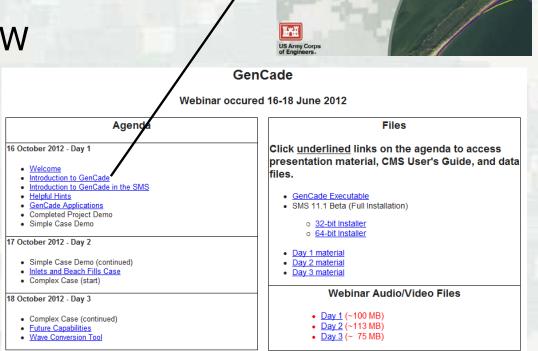

What is the CMS?

Integrated wave, current, and sediment transport model in the SMS

Includes:

- Application specific solvers
 - Implicit: ∆t~10 min
 - Explicit $\Delta t \sim 1$ sec for
- Multiple-sized sed. transport
- Grid options
 - Non-uniform and
 - Telescoping Cart. grids
 - Flexibility and efficiency
- Parallelization on PC's

GenCade – Tech-Transfer & District Interaction


Development Cente

<u>Webinars</u> Introduction to GenCade Webinar (October, 6 hours)

Onslow Bay Webinar to SAW

Regional Sediment Transport Analysis at Onslow Bay, North Carolina: GenCade Application

1 - S	Presented to USACE-SAW
	by
	Ashley Frey
Star Star	Sophie Munger, Contractor, Blue
	Science Consultants
	November 26, 2012

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

Introduction to GenCade

Research Civil Engineer, Co-PI of the Inlet Engineering Toolbox work unit of CIRP

Ashlev Frev

Nearshore Berms RSM Leveraged

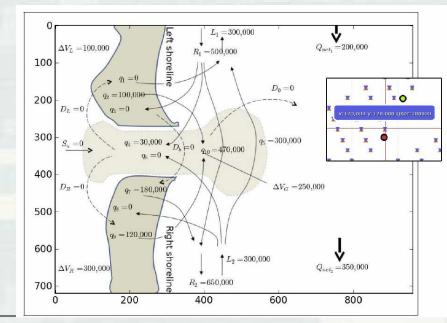
The Nearshore Berm Calculator

BUILDING STRONG®

http://bermcalc.azurewebsiteS.net

DC

Sediment Budget Calculator


Auto-populate R's and L's

BUILDING STRONG

Populate									
Populate S	ample								
ich shore	ine is downdrift O	R of less certain	volume change? F	Right	[Units yds/year	
	100000		RI		500000			increment	
mum	100000		maximu	m	00000			50000	
imum	100000		R2 maximu		500000			increment	
			a New York					50000	
	-100000		L1		-500000			increment	
mum	-100000		maximu	m	-500000			-50000	
imum	-100000		L2 maximu	m	-500000			increment	
								-50000	
change,	-100000		Right		-300000			gross	
eft								250000	
raction of	f incident transp	ort impounded	at left (j1) and rig	ht (j2)	jetties (0= t	ransparent jett	y; 1= imperm	eable jetty	
0				J2 0)				
ocal inlet-	induced transpo	ort from left (m	1) and right (m2)	shore	lines (expre	ssed as a perc	entage of R	and L2, respecti	(ely):
0.2				MZ					
echanica	l transfer of sar	nd from the inle	t to the left (DL) a	and ric	tht (DP) sho	relines respec	tively		
0				DR		interes, respec			
1				- Ma					
	a transport of sa	and from left sr	foreline to right ar			ive if left to rigi	nt, negative i	f right to left) or pl	scement offshor
B 0				DO	~				
	of sand into inle	t from upland s	ources						
0									
				Ca	alculate				
				(scr	oll down to	view calculate	d chart)		

An online web-tool that applies the Bodge Method of formulating an inlet and adjacent beach sediment budget through developing a Family of Solutions that satisfy user-defined constraints

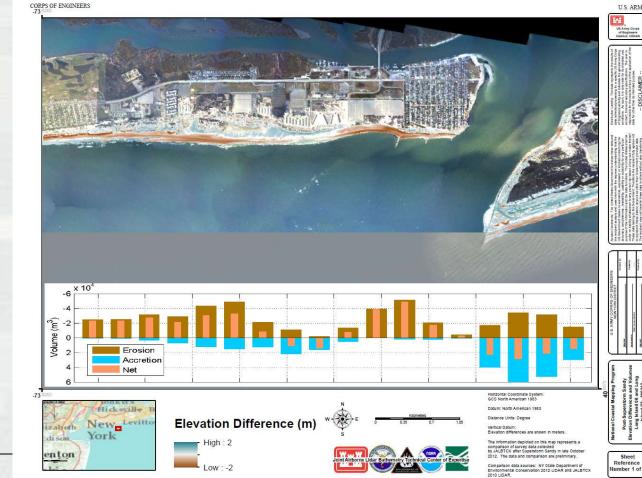
Webinar in July with 11 attendees from Districts

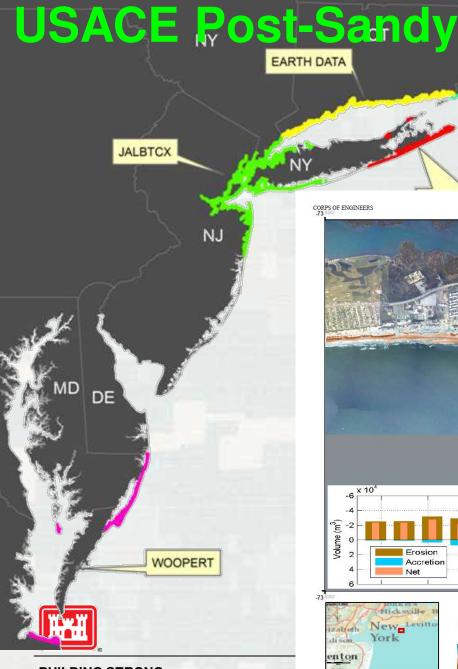
National Coastal Mapping Program

Jennifer M. Wozencraft

Director, Joint Airborne Lidar Bathymetry Technical Center of Expertise




US Army Corps of Engineers
BUILDING STRONG®



Joint Airborne Lidar Bathymetry Technical Center of Expertise

BUILDING STRONG®

2012 Aerial Photography data source: NOAA Hurricane Sandy Response Imagery Review Number 31.0 Dec 35(3)(0)

2004-2010

rate index shoreline change

dune height index 2010

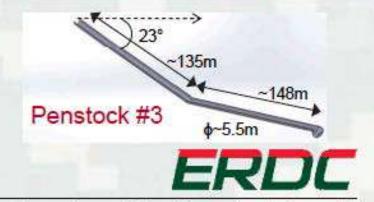
beach width index

2010

Combined geomorphology index

Coastal engineering indices Bradenton 32% 90% Longboat Key • Whitfield 72% Sarasota 60% 94% Geomorphology Dune height Gulf Gate Estates **Beach width** Shoreline change Inlets Ebb shoal volume change Structure dimensions relative to design Environment Dune vegetation density Wetland density Submerged aquatic vegetation density 97% 96% Human use Impervious surface density 73%

National Coastal Mapping Program


Regional Sediment Management - Uniting Navigation, Beaches, and the Venice

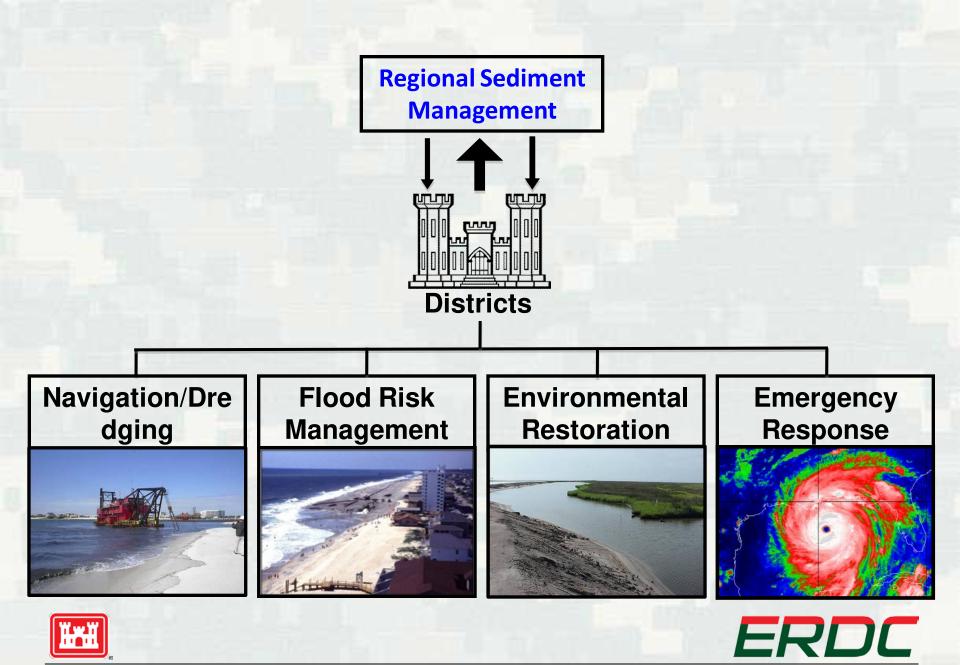
FY13 Product Development

- 11/8/2012 Site Visit, Carter's Lake, Penstock #3
- Challenges
 - Little / no light
 - Water / slippery surface in center
 - No surface features
 - Curved & inclined floor
 - Fe₂O₃ dust

USACE Regional Sediment Management Program (RSM)

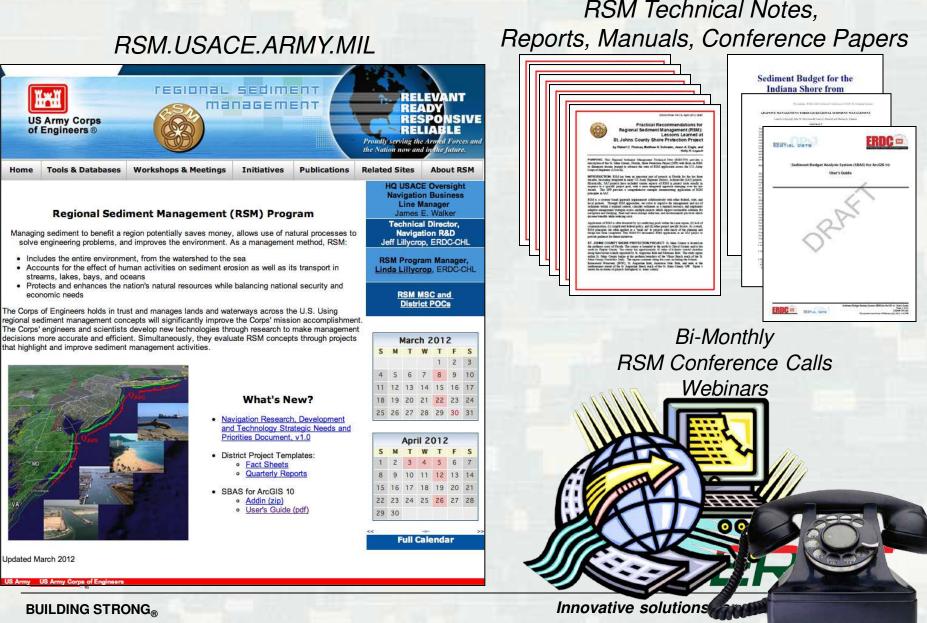
Chincoteag

Linda Lillycrop Program Manager


Jim Walker HQ, Proponent Navigation Business Line Manager

Jeff Lillycrop Technical Director, Navigation

Eddie Wiggins Associate Technical Director, Navigation


> Navigation RARG Meeting Vicksburg, MS 375 April 2012

US Army Corps of Engineers BUILDING STRONG®


BUILDING STRONG®

RSM Products FY12 & FY13 - FY17

26

Navigation Data Integration Framework

BUILDING STRONG®

Questions?

BUILDING STRONG®

ERDC