Engineering With Nature 6 EWN

Dr. Todd S. Bridges

Senior Research Scientist, Environmental Science **Engineer Research and Development Center**

May 2012

US Army Corps of Engineers BUILDING STRONG

The Challenge: The Status Quo is Not An Option

The need:

- Efficient, cost effective engineering and operational practices
- More collaboration and cooperation with our partners and stakeholders.
 - Ports, commercial interests, regulators, NGOs, and others
- Sustainable projects. Triple-win outcomes integrating social, environmental and economic objectives.

The USACE Civil Works Strategic Plan Sustainable Solutions to America's Water Resources Needs

- Vision: "Contribute to the strength of the Nation through innovative and environmentally sustainable solutions to the Nation's water resources challenges."
- The goals established by this strategy are to:
 - Assist in providing for safe and resilient communities and infrastructure.
 - Help facilitate commercial navigation in an environmentally and economically sustainable fashion.
 - Restore degraded aquatic ecosystems and prevent future environmental losses.
 - Implement effective, reliable, and adaptive life-cycle performance management of infrastructure.
 - Build and sustain a high quality, highly dedicated workforce.

Definition

Engineering With Nature is the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes.

Background

- Engineering With Nature initiative was established by the USACE Navigation program in 2010. Over that period we have:
 - Conducted 8 workshops that have defined the scope and technical approach
 - Participants have included HQ, Districts, other agencies, NGOs, academics, private sector, international collaborators
 - ▶ Developed a strategic plan for the initiative
 - ► Initiated research to support the intent of EWN
 - Numerous briefings and discussions in a variety of fora

Working with Nature

Buildingwith Nature

Engineering With Nature

EWN, A Natural Extension of RSM

- EWN- An ecosystem

 approach to infrastructure development and operations
 - ► Applied across missions and business lines
 - ► Expanding environmental benefits and services provided by infrastructure

The Essential Ingredients of EWN

- Use science and engineering to produce operational efficiencies
 - Support sustainable delivery of project benefits.
- Use natural process to maximum benefit
 - ➤ To reduce demands on limited resources, minimize the environmental footprint of the project, and to enhance the quality of benefits produced
- Broaden and extend the benefits provided by projects
 - To include substantiated economic, social, and environmental benefits
- Use science-based collaborative processes to organize and focus interests, stakeholders, and partners
 - ▶ To reduce social friction, resistance, and project delays while producing more broadly acceptable projects

Example EWN Opportunities

- Cost-efficient engineering practices
 - ► E.g., for enhancing the habitat value of infrastructure
- Use engineering to focus natural processes that achieve operational and environmental objectives
 - E.g., to minimize navigation channel infilling and to transport and focus sediments for positive benefits
- Strategic placement of sediments for beneficial use of dredged material
 - ► E.g., make use of hydrodynamics and natural transport processes to build near-shore habitats
- Optimizing the use of natural systems, such as wetlands and other features
 - ► E.g., to reduce the effects of storm processes and sea level rise on shorelines and coasts
- Science-based communications processes
 - ➤ To significantly improve stakeholder engagement, collaboration and communication

Upper Mississippi River Training Structures: Chevrons

Upper Missouri River Sandbar Habitat

- \$25 Million to construct 650 acres of sandbar
- Buried under 16,000 acres, 2011 flood

November 2011

Loosahatchie Bar Aquatic Habitat Rehabilitation

Example EWN Solutions Strategic Sediment Placement

North Tybee Island Savannah, Georgia

Wilmington Offshore Fisheries Enhancement Structure

Long-distance pumping of dredged material for wetlands creation in coastal Louisiana, USA

 How to marry LDC with natural transport processes to expand opportunities?

Engineering With Nature: *The Progression*

Inputs and Outputs 'Degree of'

System Resilience

Efficiency

Benefits Related to the Project

Outcomes

Inputs

Communications and Technology Transfer

Technical Understanding

Innovation and Creativity

Diversity of Skills and Expertise

Stakeholder Engagement

Engineering With Nature

- Smart, efficient engineering practice
- Expand the range of benefits provided through water-based infrastructure
 - Emphasis on environmental outcomes
- Progress achieved through productive, collaborative project dynamics

