Engineering With Nature EWN

Dr. Todd S. Bridges, ST

Senior Research Scientist, Environmental Science **Engineer Research and Development Center**

SAME Luncheon 25 September 2012

US Army Corps of Engineers BUILDING STRONG®

The Challenge: The Status Quo is Not An Option

The need:

- Efficient, cost effective engineering and operational practices
- More collaboration and cooperation with our partners and stakeholders.
 - Ports, commercial interests, regulators, NGOs, and others
- Sustainable projects. Triple-win outcomes integrating social, environmental and economic objectives.

The USACE Civil Works Strategic Plan Sustainable Solutions to America's Water Resources Needs

- Vision: "Contribute to the strength of the Nation through innovative and environmentally sustainable solutions to the Nation's water resources challenges."
- The goals established by this strategy are to:
 - Assist in providing for safe and resilient communities and infrastructure.
 - Help facilitate commercial navigation in an environmentally and economically sustainable fashion.
 - Restore degraded aquatic ecosystems and prevent future environmental losses.
 - Implement effective, reliable, and adaptive life-cycle performance management of infrastructure.
 - Build and sustain a high quality, highly dedicated workforce.

USACE's "Reinvigorated" Environmental Operating Principles

- Foster Sustainability as a way of life throughout the organization.
- Proactively consider environmental consequences of all Corps activities and act accordingly.
- Create mutually supporting economic and environmentally sustainable solutions.
- Continue to meet our corporate responsibility and accountability under the law for activities undertaken by the Corps, which may impact human and natural environments.
- Consider the environment in employing a risk management and systems approach throughout life cycles of projects and programs.
- Leverage scientific, economic and social knowledge to understand the environmental context and effects of Corps actions in a collaborative manner.
- Employ an open, transparent process that respects views of individuals and groups interested in Corps activities.

USACE's "Reinvigorated" Environmental Operating Principles

- Foster Sustainability as a way of life throughout the organization.
- Proactively consider environmental consequences of all Corps activities and act accordingly.
- Create mutually supporting economic and environmentally sustainable solutions.
- Continue to meet our corporate responsibility and accountability under the law for activities undertaken by the Corps, which may impact human and natural environments.
- Consider the environment in employing a risk management and systems approach throughout life cycles of projects and programs.
- Leverage scientific, economic and social knowledge to understand the environmental context and effects of Corps actions in a collaborative manner.
- Employ an open, transparent process that respects views of individuals and groups interested in Corps activities.

USACE's "Reinvigorated" Environmental Operating Principles

- Foster Sustainability as a way of life throughout the organization.
- Proactively consider environmental consequences of all Corps activities and act accordingly.
- Create mutually supporting economic and environmentally sustainable solutions.
- Continue to meet our corporate responsibility and accountability under the law for activities undertaken by the Corps, which may impact human and natural environments.
- Consider the environment in employing a risk management and systems approach throughout life cycles of projects and programs.
- Leverage scientific, economic and social knowledge to understand the environmental context and effects of Corps actions in a collaborative manner.
- Employ an open, transparent process that respects views of individuals and groups interested in Corps activities.

Definition

Engineering With Nature is the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes.

Key Ingredients

- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative processes to organize and focus interests, stakeholders, and partners

Background

- Engineering With Nature initiative was started by USACE Navigation program in 2010. Over that period we have:
 - Engaged > 200 ind. across USACE Districts (23), Divisions, HQ; other agencies, NGOs, academia, private sector, international collaborators
 - Workshops (9), dialogue sessions, project development teams, etc.
 - ▶ Developed a strategic plan for the initiative
 - ▶ Initiated research to support the intent of EWN
 - ▶ Implementing our communication plan

Working with Nature

Buildingwith Nature

Engineering With Nature

EWN, A Natural Extension of RSM

- EWN- An ecosystem

 approach to infrastructure development and operations
 - ► Applied across missions and business lines
 - ► Expanding environmental benefits and services provided by infrastructure

Upper Mississippi River Training Structures: Chevrons

River Bendway Weirs

Environmentally Enhanced Breakwater Toe Blocks

Upper Missouri River Sandbar Habitat

- \$25 Million to construct 650 acres of sandbar
- Buried under 16,000 acres, 2011 flood

November 2011

Loosahatchie Bar Aquatic Habitat Rehabilitation

Wilmington Offshore Fisheries Enhancement Structure

Example EWN Solutions Strategic Sediment Placement

North Tybee Island Savannah, Georgia

Long-distance pumping of dredged material for wetlands creation in coastal Louisiana, USA

 How to marry LDC with natural transport processes to expand opportunities?

Fish Modeling in the Columbia and Sacramento Rivers

Example EWN Opportunities

- Cost-efficient engineering practices
 - ► E.g., for enhancing the habitat value of infrastructure
- Use engineering to focus natural processes that achieve operational and environmental objectives
 - E.g., to minimize navigation channel infilling and to transport and focus sediments for positive benefits
- Strategic placement of sediments for beneficial use of dredged material
 - ► E.g., make use of hydrodynamics and natural transport processes to build near-shore habitats
- Optimizing the use of natural systems, such as wetlands and other features
 - ► E.g., to reduce the effects of storm processes and sea level rise on shorelines and coasts
- Science-based communications processes
 - ➤ To significantly improve stakeholder engagement, collaboration and communication

EWN for Coastal Resilience

DOER-EMRRP research collaboration to improve the efficiency of engineering and operational practices, expand and extend project benefits, and improve the resilience and sustainability of coastal systems under climate change.

Field Research Activities:

- Wetland primary productivity
- Sediment processes
 - Cohesive sediment settling
 - Sediment resuspension
 - Marsh platform erosion

Laboratory Analyses:

- Transport in vegetation
- Wave energy transformation

EWN for Coastal Resilience

Products

- Classification system
- Conceptual Models
- Web portal
- Enhanced numerical models & tools
 - ▶ PTM/LTFATE
 - ► SLAMM
 - ► SAND
 - ► D2M2

Collaborative Efforts

- Primary productivity and marsh accretion (USGS NWRC)
- Sediment bulk density and sediment transport (NRCS & USFWS)
- SLAMM improvements (Audubon, USFWS, & Maryland)

Example R&D Targets for EWN

- Improved modeling systems that engage users, stakeholders and decision-makers
- Understanding critical, fundamental processes
 - ► E.g., sediment transport through wetlands, fish and wildlife responses to engineered features, engineering performance of environmental structures
- Reliable, cost-efficient monitoring technologies for measuring environmental outcomes
- Coastal engineering/infrastructure producing benefits for the environment, and vice versa

Engineering With Nature

- Expand the range of benefits provided through water-based infrastructure
 - ▶ "Doing more with less"
- Balancing consideration of environmental risks with benefits
- A path to more sustainable projects

