

A RAPID REVIEW OF ENVIRONMENTAL FLOW ASSESSMENT

Kyle McKay March 31, 2015 Engineering with Nature Water Operations Workshop

What are "environmental flows"?

Environmental flows describe the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems. -Brisbane Declaration (2007)

Challenges in eflow assessment

What alternative flow regimes are available?

What analytical methods can be used to compare those alternatives?

How do we choose the "best" alternative?

Alternative Environment Flow Regimes

The "Natural Flow Regime" Paradigm

- Magnitude: How big (or small) is an event?
- Frequency: How often does an event occur?
- **Timing:** Does the time of the flow event matter?
- **Duration:** How long is the event?
- Rate-of-change: How quickly does the event change?

Figure: Poff et al. (1997)

"Environmental Flow Components"

Figure: Matthews and Richter (2007)

Two fundamental eflow approaches

Six families of environmental flows

Method	Description / Premise	Examples
Hydrologic	Simple, desktop analysis based on (sometimes arbitrary) hydrologic statistics	Minimum flows Sustainability boundaries
Hydraulic	Thresholds in channel geometry	Wetted perimeter
Habitat	Habitat provision for a taxa or guild (tools: HEC-EFM, PHabSIM, SEFA,)	Instream flow incremental method (IFIM)
Holistic	Multi-disciplinary, multi-objective expert panel approach emphasizing flow regime	"Savannah Process" Building Block Method
Optimization	Specify flow regime based on objective, constraint, and penalty functions	Classic economically driven reservoir modeling
Regionalization	Holistic method of addressing eflows for an entire region, which emphasizes scientific and social processes	Ecological Limits of Hydrologic Alteration (ELOHA)

Alternative Analytical Approaches

Hydrologic Alteration

- Hydrologic Statistics
 - Mean
 - Coefficient of variation
 - Skewness
 - Kurtosis
 - Seasonal amplitude
 - Seasonal phase shift
 - ••••
- Common analytical platforms
 - Indicators of Hydrologic Alteration (IHA)
 - R-package for eflows
 - Ad hoc models

Water Quality and Sediment Transport

- Dissolved Oxygen
- Nutrients (N, P)
- 🗆 Light
- Sediment

Carbon (!!)

- Base of the food web
- Biotic (fish, plankton, etc)
- Abiotic (dissolved, particulate, large wood)

Figures: Julian et al. (2008), McKay et al. (In prep), Kominoski and Rosemond (2012)

Flow-Ecology Relationships

- Habitat Provision: species, guilds
- Population Demography: abundance, survival, recruitment, movement,...
- Ecosystem Processes: decomposition, nutrient uptake, metabolism,...
- Ecosystem energetics: food web stability

Figures: Hickey and Fields (2009), Peterson et al. (2011), Cross et al. (2011)

Socio-Economic Outcomes

Ecosystem Services

- Not new to USACE (flood, nav, rec, etc.)
- New endpoints for USACE planning
- Cultural and personal dimensions of water management are growing

Informing Eflow Decision-Making

Governance in water management

- What is the decision making environment?
- Equity: Who's at the table? Who wins and loses? Distribution
- Decision authority: Funding, Power

Social, economic, and political settings (S) S1 Economic development. S2 Demographic trends. S3 Political stability. S4 Government resource policies. S5 Market incentives. S6 Media organization.

Resource systems (RS)	Governance systems (GS)
RS1 Sector (e.g., water, forests, pasture, fish)	GS1 Government organizations
RS2 Clarity of system boundaries	GS2 Nongovernment organizations
RS3 Size of resource system*	GS3 Network structure
RS4 Human-constructed facilities	GS4 Property-rights systems
RS5 Productivity of system*	GS5 Operational rules
RS6 Equilibrium properties	GS6 Collective-choice rules*
RS7 Predictability of system dynamics*	GS7 Constitutional rules
RS8 Storage characteristics	GS8 Monitoring and sanctioning processes
RS9 Location	
Resource units (RU)	Users (U)
RU1 Resource unit mobility*	U1 Number of users*
RU2 Growth or replacement rate	U2 Socioeconomic attributes of users
RU3 Interaction among resource units	U3 History of use
RU4 Economic value	U4 Location
RU5 Number of units	U5 Leadership/entrepreneurship*
RU6 Distinctive markings	U6 Norms/social capital*
RU7 Spatial and temporal distribution	U7 Knowledge of SES/mental models*
	U8 Importance of resource*

U9 Technology used

Ostrom (2009, Science)

Decision Analysis

Objective setting and metric development

- Metric comparison and making trade-offs
- Sequential decisions and adaptive management

General Goals	Specific Objectives	Metrics
Provide for municipal water supply	Maximize water withdrawal	Average annual withdrawal rate
Maintain a healthy river ecosystem	Minimize difference between unaltered and altered hydrographs	7 Discharge metrics normalized from 0 to 1 and averaged

Managing a "Noisy" Hydrograph

- Predictable Variability
- Unpredictable Stochasticity

Daily

- Seasonal
- Multi-annual: drought, ENSO, AMO
- Multi-decadal: land use, climate

McKay (In press)

USACE Environmental Flow Opportunity

- Restoration via Operations
- USACE owns & operates 692 dams
 - < 40 in Sustainable Rivers Program</p>
 - ► Volunteers for SRP round 2?
 - Could we develop an "SRP-lite" process?

Could environmental flows be our largest environmental benefit to the nation (80,000 km)?

Could these analyses be conducted under existing authorities?

Contact Information Kyle McKay 601-415-7160 kyle.mckay@usace.army.mil

THE MIDDLE OCONEE RIVER

An incredible ecosystem!

Fish Species

Richness

25

33

76

>20

Do withdrawals have a substantial hydrologic effect?

Can we meet municipal water demand with less environmental impact?

Trade-offs in the Middle Oconee

Withdrawal Rate (MGD)

Withdrawal Rate (MGD)

Trade-offs in the Middle Oconee

- Sustainability boundaries are consistently better relative to BOTH objectives
- Constrained minimum flows cannot obtain more than ~40 MGD
- Annual and monthly minimum flows perform similarly

Withdrawal Rate (MGD)

BURNING EFLOW CHALLENGES

1 – Meaningless mean discharge

Oconee River near Penfield, Georgia

Within a Year

Rio Sabana near Sabana, Puerto Rico

McKay (Submitted)

2 – Discharge is a lumped parameter

We don't just manage flow!

- Temperature, turbidity, carbon, wood, sediment,...
- Structural options: Multi-level intakes, Reservoir warming towers, bypasses,...
- Operational options: Sluicing, flow management...

USACE Cougar Reservoir, Oregon

3 – Minimum flows are minimal

- Do we want minimal ecosystems?
- Moving out quickly with incremental decision-making
 - Eflow analyses can take significant amounts of time
 - Need better "default" options
 - 7Q10 was design flow for wastewater!
 - "Sustainability boundary" provides a strong starting point

4 – More creative alternatives

- Using storage for environmental purposes
 - TNC Green River approach
- Re-examining other reservoir purposes
- Creative structural alternatives
- Demand-side management
 - No demand, no need for supply.
 - Replacement of reservoir functions elsewhere?

5 – Governance & Decision Making

- Equity: Who's at the table? Who wins and loses?
- Decision authority: Legal, Funding, Power
- □ Trust: Communication, Buy-in
- How are objectives chosen, measured, weighted, and combined?
- How are trade-offs presented? When, where, and how much are you gaining (or losing)?

6 – Overcoming administrative hurdles

- Initiating environmental flow studies within a limited budget
 - National and regional prioritization of studies
 - Regional environmental flow assessments (e.g., ELOHA, HGM guidebooks)
- Water control manual updates
 - What can be done within the existing manuals?
 - Can we make manual update easier and more frequent?
- Instituting strong monitoring and adaptive management
 - Fostering an experimental attitude at USACE's "Living Laboratories" complete with hypothesis testing, monitoring, and adaptive management

