Engineering with Nature: Breakwaters for the creation of Submerged Aquatic Vegetation (SAV) habitat

Restoration Ecology

US Army Corps

of Engineers

Evamaria W. Koch, Nicole Barth, Dale M. Booth, Cindy Palinkas and Deborah Shafer

Horn Point Laboratory University of Maryland Center for Environmental Science

SAV - flowering, rooted aquatic (submersed) plants One of the most important coastal habitats.

SAV have been disappearing at an alarming rate. Causes: eutrophication = lack of light.

CTD Survey: SGLC3S1: June 20, 2006

.

Casson Point, Little Choptank

But not all sediments are equal. Sediment type being eroded matters! Erosion of mud leads to higher turbidity - bad for SAV.

Erosion of sand - to a certain extent, good for SAV

Cook's Point, Choptank River

SAV need > 65% sand, < 5% organic matter

Sand is of the essence in the creation of viable SAV habitat!

Can breakwaters create suitable SAV habitat?

ages from 0 to 20 yrs old

SILLS still have the same detrimental effects as some breakwaters, just to a lesser extent.

*-

6

A. MAN

<u>Learning</u> from nature: what is the right sediment accumulation rate to create SAV habitat?

Estuaries and Coasts DOI 10.1007/s12237-012-9542-7

Sediment Accumulation Rates and Submersed Aquatic Vegetation (SAV) Distributions in the Mesohaline Chesapeake Bay, USA

Cindy M. Palinkas · Evamaria W. Koch

Depositional rates > 9 mm/yr are beneficial for SAV

Conclusions

Breakwaters can sustain SAV populations as long as some habitat requirements are met:

 Water quality - regional water quality needs to be good enough to support SAV growth

Water depth - deep enough so
SAV can remain submersed at low
tide

 Sediment - needs to remain sandy (<35% silt+clay) with low organic matter (<5 to 8% organic matter) over time. Sedimentation rates
>9mm/yr are also beneficial but no infilling (habitat becomes intertidal)

 Fetch - breakwaters are most beneficial to SAV in long fetch areas (> 10 km)

Management Recommendations breakwater construction for SAV conservation and/or restoration

Management Recommendations breakwater construction for SAV conservation and/or restoration

Shoreline characteristics also need to be considered:

 Eroding Marshes a layer of sand*
needs to be added to cover the marsh peat in the sub-tidal
(*>2cm, Wicks et al. 2009) Sandy Beach breakwater
beneficial to SAV
especially when fetch > 10 km Cliffs - base of cliff needs to be stabilized to reduce sediment input and shoaling breakwaterprotected area 21

Questions for Evamaria Koch?

koch@umces.edu

Learning from nature: what is the right sediment accumulation rate to create SAV habitat?

