Engineering With Nature in Rivers

Dr. Todd S. Bridges

Senior Research Scientist, Environmental Science

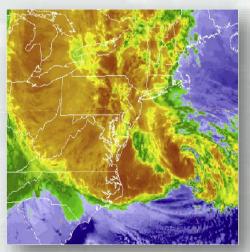
U.S. Army Engineer Research and Development Center,

U.S. Army Corps of Engineers todd.s.bridges@usace.army.mil

SMART Rivers, Pittsburgh, PA September 18, 2017

Creating Value through Alignment...

- What opportunities are there for achieving better alignment of natural and engineered systems?
 - Can improved alignment reduce risks to life, property and ecosystems?
 - ➤ What range of services can be produced through such alignment?
 - ► What are the science and engineering needs in order to achieve better alignment?


Sustainable Solutions Vision: "Contribute to the strength of the Nation through innovative and environmentally sustainable solutions to the Nation's water resources challenges."

Value and Use of Natural Systems

Following Hurricane Sandy:

- Risk industry-based tools used to quantify the economic benefits of coastal wetlands
 - ► Temperate coastal wetlands saved more than \$625 million in flood damages.
 - In Ocean County, New Jersey, salt marsh conservation can significantly reduce average annual flood losses by more than 20%.

COASTAL WETLANDS AND FLOOD DAMAGE REDUCTION

Using Risk Industry-based Models to Assess Natural Defenses in the Northeastern USA

Working with Nature: Background

- Developed as a position paper by PIANC's Environmental Commission in 2007-2008
 - ► Supported by CEDA and IADC
- Endorsed by PIANC Executive Committee
- Aims to provide a practical framework for sustainable navigation infrastructure development

PIANC Position Paper

'Working with Nature'

October 2008; revised January 2011

What do we mean by 'Working with Nature'?

Maximising opportunities; reducing frustrations. Working with Nature is an integrated process which involves working to identify and exploit win-win solutions which respect nature and are acceptable to both project proponents and environmental stakeholders. It is a philosophy which needs to be applied early in a project when flexibility is still possible. By adopting a determined and proactive approach from conception through to project completion, opportunities can be maximised and - importantly - frustrations, delays and associated extra costs can be

Engineering With Nature™...

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes.

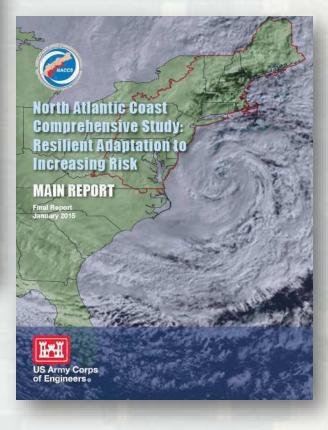
Key Elements:

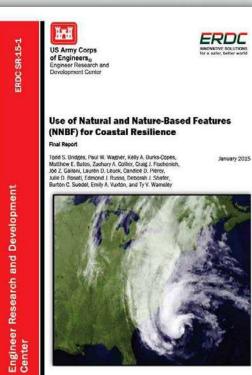
- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative processes to organize and focus interests, stakeholders, and partners

EWN Across USACE Mission Space

- Navigation
 - Strategic placement of dredged material supporting habitat development
 - Habitat integrated into structures
 - ► Enhanced Natural Recovery
- Flood Risk Management
 - Natural and Nature-Based Features to support coastal resilience
 - ▶ Levee setbacks
- Ecosystem Restoration
 - Ecosystem services supporting engineering function
 - "Natural" development of designed features
- Water Operations
 - Shoreline stabilization using native plants
 - Environmental flows and connectivity

The North Atlantic Coast Comprehensive Study


Coastal Risk Reduction and Resilience: Using the Full Array of Measures


US Army Corps of Engineers

Directorate of Civil Works

September 2013 CWTS 2013-3

Engineering Performance: Nature-Based Features Work in Different Ways

Natural and Nature-Based Infrastructure at a Glance

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:
STORM INTENSITY, TRACK, AND FORWARD SPEED, AND SURROUNDING LOCAL BATHYMETRY AND TOPOGRAPHY

Dunes and Beaches

Benefits/Processes

Break offshore waves

Attenuate wave energy Slow inland water transfer

Salt Marshes, Wetlands, Submerged Aquatic Vegetation (SAV)

Vegetated

Features:

Benefits/Processes Break offshore waves

Attenuate wave energy Slow inland water transfer Increase infiltration

Oyster and Coral Reefs

Benefits/Processes

Break offshore waves Attenuate

> Slow inland water transfer

Performance Factors Reef width, elevation and roughness

Barrier Islands

Benefits/Processes

Wave attenuation and/or dissipation Sediment stabilization

Performance Factors

Island elevation, length, and width Land cover Breach susceptibility Proximity to

mainland shore

Maritime Forests/Shrub Communities

Benefits/Processes

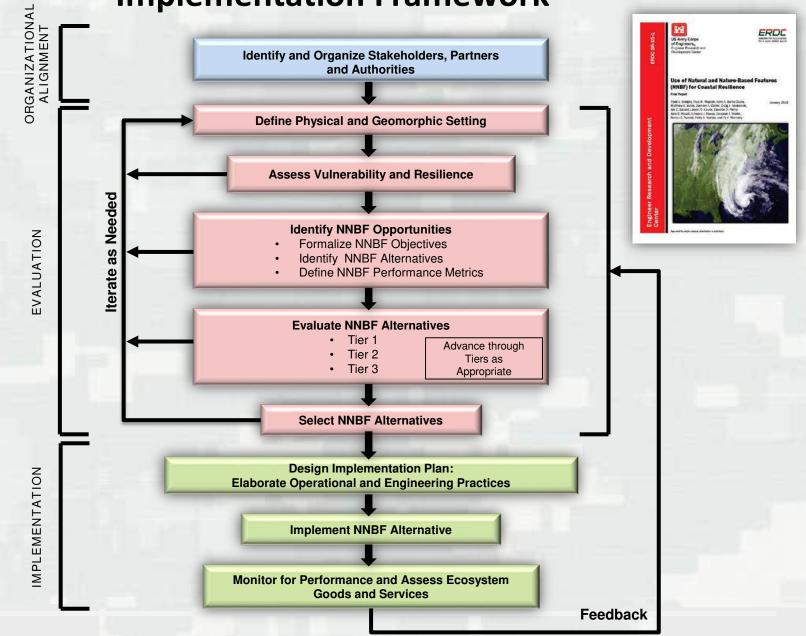
Wave attenuation and/or dissipation Shoreline erosion stabilization Soil retention

Performance Factors

Vegetation height and density Forest dimension Sediment composition Platform elevation

Performance Factors

Berm height and width Beach Slope


Sediment grain size and supply

> Dune height, crest, width

Presence of vegetation

Performance Factors

Marsh, wetland, or SAV elevation and continuity Vegetation type and density Natural and Nature-Based Features Evaluation and Implementation Framework

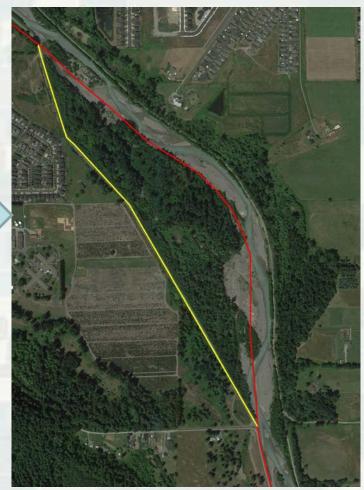
Fort Pierce City Marina, Florida

Enhancing Ecosystem Value

Upper Mississippi River Training Structures: Chevrons

Loosahatchie Bar, Memphis

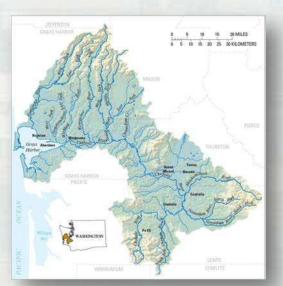
Milwaukee Harbor Breakwater



Soldier's Home Levee Setback

April 2006

June 2016


S.ARMY YYWY

Original Levee

Setback Levee

Chehalis Basin Floodplain Restoration



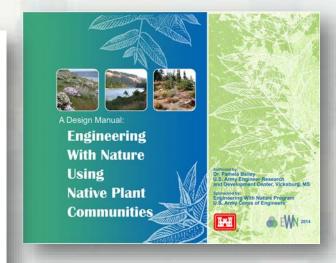
Confederated Tribes of the Chehalis Reservation

Engineering with Natural Materials

National Large Wood Manual

Assessment, Planning, Design, and Maintenance of Large Wood in Fluvial Ecosystems: Restoring Process, Function, and Structure

January 2016



www.engineeringwithnature.org

Horseshoe Bend, Atchafalaya River

 Options for managing dredged material via shore-based wetland creation were exhausted

 Strategic placement of sediment (0.5-1.8 mcy/1-3 yrs) was used to create a ~35 ha island

 Producing significant environmental and engineering benefits

 Project won WEDA's 2015
 Award for Environmental Excellence

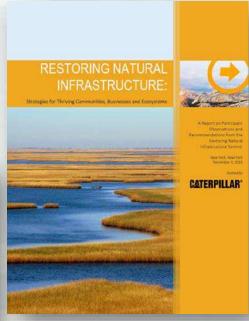
Innovative solutions for a safer, better world

Laws and Mandates:

Water Infrastructure Improvements for the Nation Act (WIIN Act) 2016

SEC. 1184. Consideration of measures.

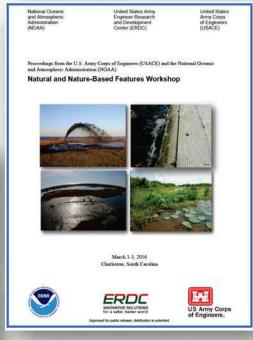
- (a) Definitions.—In this section, the following definitions apply:
- (1) NATURAL FEATURE.—The term "natural feature" means a feature that is created through the action of physical, geological, biological, and chemical processes over time.
- (2) NATURE-BASED FEATURE.—The term "nature-based feature" means a feature that is created by human design, engineering, and construction to provide risk reduction in coastal areas by acting in concert with natural processes.
- (b) Requirement.—In studying the feasibility of projects for flood risk management, hurricane and storm damage reduction, and ecosystem restoration the Secretary shall, with the consent of the non-Federal sponsor of the feasibility study, consider, as appropriate—
 - (1) natural features;
 - (2) nature-based features;
 - (3) nonstructural measures; and
 - (4) structural measures.



The Private Sector: **Caterpillar Corporation's** Restoring Natural Infrastructure Summit 4 November 2015, New York City

Collaboration: USACE Galveston, Buffalo, and Philadelphia Districts-- The EWN "Proving Grounds"

- EWN Proving Ground Kick-Off Workshops
 - October (SWG) and December (LRB) 2014; June 2016 (NAP)
 - District, Division, EWN Leadership Team
- Identify opportunities to implement EWN across current and future programs and projects
- Emphasis on solution co-development



Collaboration: USACE – NOAA Workshop on Natural and Nature-Based Features Charleston, SC; 1-3 March 2016

www.engineeringwithnature.org (NNBF)

International Guidelines for Use of Natural and Nature-Based Features for Sustainable Systems

- Publish coastal NNBF technical guidelines by 2020:
 - Multi-author: government, academia, NGOs, engineering firms, construction companies, etc.
 - Addressing the full project life cycle: planning, design, engineering, construction, and maintenance
 - ► Guidelines in 3 Sections
 - Overarching topics
 - Coastal Applications
 - River/Inland Applications

1906 San Francisco Earthquake

Agnews State Hospital, 1906

