

Engineering With Nature...

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes.

Key Elements:

- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative www.e processes to organize and focus interests, stakeholders, and partners

Social

Acceptable

Environmental

Equitable

Economic

EWN Across USACE Mission Space

- Navigation
 - Strategic placement of dredged material supporting habitat development
 - Habitat integrated into navigation structures
- Flood Risk Management
 - Natural and Nature-Based Features to support coastal resilience
 - ► Levee setbacks
- Ecosystem Restoration
 - Ecosystem services supporting engineering function
 - "Natural" development of designed features
- Water Operations
 - Shoreline stabilization using native plants
 - ▶ Environmental flows

EWN Status

- Engineering With Nature initiative started within USACE Civil Works program in 2010. Over that period we have:
 - ► Engaged across USACE Districts (23), Divisions, HQ; other agencies, NGOs, academia, private sector, international collaborators
 - Workshops (>20), dialogue sessions, project development teams, etc.
 - ► Implementing strategic plan
 - ► Focused research projects on EWN
 - ► Field demonstration projects
 - ▶ Communication plan
 - ▶ Awards
 - 2013 Chief of Engineers Environmental Award in Natural Resources Conservation
 - 2014 USACE National Award-Green Innovation

Engineering With Nature Elements

Degree

Science and engineering to improve operational efficiency

Using natural systems and processes to maximize the benefits

Broadening the benefits of the project - social, environmental, economic

Using collaborative processes to engage partners and stakeholders

EWN Elements

Science and Engineering to Improve Operational Efficiency

- USACE operates a lot of navigation projects
 - ▶ 1,067 coastal navigation projects
 - ► 13,000 miles of coastal navigation channels
 - ▶ 27 inland river systems with 12,000 miles of channels
 - ▶ 236 lock chambers at 192 lock sites
 - ▶ 929 navigation structures
 - ▶ 844 bridges
- Hundreds of projects in maintenance backlog

Environmental Laws and Regulations Applicable to Dredging

- National Environmental Policy Act of 1969
- Federal Water Pollution Control Act of 1972 (amended and renamed the Clean Water Act in 1977)
- Marine Protection, Research, and Sanctuaries Act of 1972 (commonly called the Ocean Dumping Act)
- Coastal Zone Management Act of 1972
- Marine Mammal Protection Act of 1972, amended 1994
- Endangered Species Act of 1973
- Resource Conservation and Recovery Act of 1976
- Magnuson-Stevens Act as reauthorized by the Sustainable Fisheries Act of 1996

Environmental Restrictions

- The majority of our projects are restricted in terms of:
 - ▶ When we operate
 - i.e., dredging windows
 - ► The equipment we use
 - i.e., dredge type, barge size, etc.
 - ► How we operate the equipment
 - i.e., disposal site selection, overflow, decanting, discharge rates, etc.
- These restrictions increase operational costs and constrain execution

Advancing Operational Efficiency...

More emphasis on the value produced by projects:

- ► Economic
- ► Social
- ▶ Environmental
- More communication
 about cost implications
 associated with environmental
 restrictions

Using Natural Systems and Processes to Maximize Benefits

- A key element of sustainable projects
- Examples:
 - ► Strategic Sediment Placement
 - To support beaches, wetlands, mudflats etc.
 - Natural and Nature-Based Features
 - ► "Hydraulically Aided Dredging"
 - Water Injection Dredging
 - Agitation Dredging

North Atlantic Coast Comprehensive Study (NACCS)

DRAINAGE

FLOODWALL

SHORELINE

STABILIZATION

 Explore opportunities to integrates structural, non-structural and Natural and Nature-Based Features (NNBF) to provide multiple lines of defense against future storms and sea level rise, generating a full array of relevant economic, environmental and social ecosystem goods and services.

LIVING SHORELINES

TIDAL

VEGETATED FEATURES

OYSTER & CORAL REFES

BREAKWATERS

FUTURE SEA LEVE

> See Bridges et. al., 2015 http://www.nad.usace.army.mil/CompStudy

BEACH & DUNE

RESTORATION

BARRIER

Natural and Nature-Based Infrastructure at a Glance

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:
STORM INTENSITY, TRACK, AND FORWARD SPEED, AND SURROUNDING LOCAL BATHYMETRY AND TOPOGRAPHY

Dunes and Beaches

Benefits/Processes Break offshore waves

> Attenuate wave energy Slow inland water transfer

Performance Factors
Berm height and width
Beach Slope
Sediment grain size
and supply
Dune height,
crest, width
Presence of vegetation

Benefits/Processes Break offshore waves

Attenuate wave energy Slow inland water transfer Increase infiltration

Performance Factors

Marsh, wetland, or SAV elevation and continuity Vegetation type and density

Oyster and Coral Reefs

Benefits/Processes Break offshore waves

> Attenuate wave energy Slow inland water transfer

Performance Factors Reef width, elevation and roughness

Barrier Islands

Benefits/Processes

Wave attenuation and/or dissipation Sediment stabilization

Performance Factors
Island elevation, length,
and width
Land cover
Breach susceptibility

Land cover Breach susceptibility Proximity to mainland shore

Maritime Forests/Shrub Communities

Benefits/Processes

Wave attenuation and/or dissipation Shoreline erosion stabilization Soil retention

Performance Factors

Vegetation height and density Forest dimension Sediment composition Platform elevation

Natural and Nature-Based Features Evaluation and Implementation Framework

Advancing the Use of Natural Systems and Processes...

- More emphasis on innovation as a component of project development
- Address uncertainties
 - ► Expand communication about successes
 - "Yes, it can be done"
 - "Here's how we did it"
 - The power of the story to persuade
 - ▶ Operationalize adaptive management
- Overcome regulatory and procedural inertia
 - ► Invest in effective coordination and collaboration
 - ▶ Identify existing flexibility and make use of it
 - ▶ Use demos and pilots to get moving

Expand the Benefits Provided by Projects

- Navigation dredging provides value to the Nation!
 - ► How?
- Value creation is a key concept in sustainability
 - **▶** Economic
 - ▶ Social
 - ▶ Environmental

Atchafalaya River, Horseshoe Bend

Habitat Development

Tri-colored Heron

Snowy Egret

Glossy Ibis

Avian community

- 9 species of wading birds
- >78% juveniles
- 0.27 birds/ transect m in rookery
- Island design favorable to rookery establishment better world

Navigation Benefit

Advancing Expanded Benefits...

- More visioning about what benefits the project could produce
 - ▶ Developing a robust value proposition
- More partnering with others
- Less focus on historical constraints
- Document the benefits that are produced

Collaborative Processes to Engage Stakeholders and Partners

- There are a lot of stakeholders!
 - News Flash: They don't all care about the same things
- By investing more in stakeholder engagement we can:
 - ► Accelerate schedules
 - ► Reduce costs
 - Identify new opportunities to create value

Strategic Sediment Placement in Mobile Bay

- 25 years ago, in-bay disposal of dredged material was banned
 - Shoreline erosion and loss of habitat followed
- Thin-layer placement was demonstrated on full-scale to restore sediment processes
- Many opportunities for inwater beneficial use
- Ecosystem benefits being documented

Philadelphia District: Coastal NJ

December 2014

Stone Harbor

Avalon

Forsythe National Wildlife Refuge

- Forsythe NWR: >40,000 acres of wetlands and other habitat in coastal NJ
- Objective: Enhance ecosystem resilience through engineering and restoration
- Means: Apply EWN principles and practices

Advancing Collaborative Processes...

- Requires positive leadership within the project team
 - ➤ Vision, patience, persistence, commitment, transparency, trust-building...
- Professional help
 - ► This is more than public relations or meeting facilitation
 - ► Serious application of social science
- Biggest challenge: overcoming the attitude that dismisses stakeholder collaboration as hogwash

BUILDING STRONG®

Evolving Practice by Engineering With Nature

- Value arguments resonate
- Diversifying project benefits (economic, social, environmental) provides more opportunities for identifying agreeable trade-offs
 - ▶ Basis for partnerships
 - ▶ Alternative financing
 - ▶ Productive negotiation
- Complementing sustainability policies with sound operational practice

