

International Guidelines on Natural and Nature-Based Features for Flood Risk Management

Puerto Rico I May 2022

Reefs

Presenter: Safra Altman, US Army Corps of Engineers, United States

Leads: Ryan Lowe, The University of Western Australia, Australia Elizabeth McLeod, The Nature Conservancy, USA

Co-Authors: Borja Reguero, Safra Altman, Janine Harris, Boze Hancock, Remment ter Hofstede, Emma Rendle, Elizabeth Shaver, Jane Smith

Introduction

- Types of reefs
- Use of reefs for flood and erosion risk management
- Key reef building organisms

Coral reefs

Shellfish reefs

Artificial and hybrid reefs

Why use reefs?

- Reefs act as the first line of defense
 - reduce the wave energy and wave-driven coastal flooding (often by >90%; Ferrario et al. 2014)
 - Reduce coastal erosion
 - Shoreline stabilization
- Co-Benefits
 - food, spawning and nursery grounds for commercially-important fish
 - Improve water quality
 - compounds for medicines
 - tourism
 - fishing, and recreational activities
 - cultural value

Wave Energy and Wave Height Reduction

Ę

Reef environment (n)

Ferrario et al. 2014

Reef Complexity Impacts Wave Height

File Name

How reefs deliver flood and coastal erosion risk reduction

Effects	Performance factors	Potential Co-Benefit	Example
Wave energy dissipation	Elevation relative to water level, proximity to shore, width/height of reef, surface roughness/porosity, coral species (large branching corals vs. smaller weedy corals)	Reduce flood risk, reduce erosion, reduce damage of coastal infrastructure during storms	Fringing coral reefs in the tropical Indo-Pacific and Caribbean
Shoreline creation	Sand production, sand/sediment trapping	Coastal tourism	coral reef islands, coral atolls
Shoreline stabilization	Bathymetric configuration, surf zone, current, and sediment transport patterns	Coastal tourism through beach protection	oyster reefs adjacent to coastlines
Erosion reduction	Ability to reduce/shift wave energy Ability to reduce/shift currents Ability to stabilize shoreline	Reduced damage of coastal infrastructure during storms	Reduction of erosion during tropical cyclones (e.g. Cuttler et al. 2018)

Ways that reefs reduce coastal flooding and erosion

- Reefs are effective at reducing wave-driven coastal flooding
- Wave attenuation by wave breaking and reef roughness
- Reefs can mitigate erosion stabilize shorelines
- Can act synergistically to enhance other NNBF (e.g. wetland growth)

	Reduce erosion	Nuisance Flooding	Short wave attenuation	Reduce force and height of medium waves	Storm surge
Oyster/Bivalve Reef	+	Data gap	+	~	~
Coral Reef	+	Data gap	+	\sim	~

Benefits of combined NNBF solutions

Note: Strategies that incorporate multiple NNBF measures provide more effective shoreline and storm protection.

Effectiveness of reefs to protect coastlines

- Wave attenuation depends on:
 - ✓ Reef dimensions
 - ✓ Elevation (esp. of reef crest)
 - ✓ Location relative to shore
 - ✓ Roughness and porosity
 ✓ Waves + water level conditions
 - Waves + Water level conditions
- Reef degradation can reduce ability to protect coastlines

Reef NNBF Project goals and objectives

Objectives should be: Specific Measureable Achievable Relevant Timebound

L

Guiding Principals:

- 1. Reefs are complex physical systems
- 2. Reefs are complex ecological systems
- 3. Reefs are part of a complex socioeconomic system
- 4. Reefs are evolving systems that may require adaptation

Examples of metrics to evaluate objectives

Objective	Metric
	Reef depth profile
	Coral cover (roughness)
	Wave attenuation
Coastal protection performance	Reef width (distance to shore)
	Angle of reef with dominant wave energy direction
	Shoreline change (erosion/accretion)
Ecological performance	Coral/oyster cover (richness and diversity)
	Fisheries production

In what context do reefs make sense?

• Where they can provide the required engineering performance

Reefs in some areas can reduce erosion but may increase it in others. • Where they can provide the desired co-benefits

• Where they are accepted

Co-benefits are not uniformly produced at all locations.

InVEST documentation

Education, outreach, and guidance are required to ensure reefs are accepted.

from TNC Mangroves for Coastal Defence: Guidelines for coastal managers & policy makers

from Narayan and Beck 2017

Designing the reef

- Site selection and problem formulation
- Hydrodynamic performance and engineering design
- Design tools and models
- Ecological performance (designing the living layer)
- Evaluating costs and benefits of different options and stakeholder engagement

LW = low water; HW = high water; EHW = extreme high water

Adapted from Kramer, in World Bank (2016)

Division of Aquatic Resources, Hawaii

General Reef Design steps

Ę

Define offshore wave climate and sea levels
Assess coastal hydrodynamics at site
Quantify effects of reef structure on hydrodynamics tructure on

> Spatial resolution

Temporal resolution DATA Purpose Geographic scale

Example Design tools

Spatial scale	Intended use	Representative resolution	Hydrodynamics	Erosion
Large scale assessment	Scoping flooding and erosion risk	~100 m to kms	Regional phase-averaged wave models with empirical wave runup formulations	Empirical beach erosion models
	Assessing coastal		Wave models that account for breaking, refraction and diffraction	Morphological models
Local scale	responses to reefs (coastal flooding and erosion mitigation)	~10-100 m	For example:	Examples:
			REFDIF and mild slope, Xbeach, SWASH, Boussinesq	Xbeach
Detailed reef	Conducting detailed structural design for	_	Computational Fluid Dynamics (CFD) models for detailed hydrodynamic load and performance predictions	
design	e.g. artificial reef structures	<1 m	For example: RANS (e.g. OpenFOAM), Smooth Particle Hydrodynamics (SPH)	N/A

Reef construction and monitoring performance

- Choosing materials
- Construction techniques
- Monitoring and adaptive management

Source: Shellfish Reef as Shoreline Protection in the Netherlands; Ysebaert. Wageningen Marine Research.

Construction Considerations

Natural materials

Artificial materials

Reef type

EcoReef

Reef Balls

Steel gabions, Reguero et al. 2018

Monitoring and Maintenance

Geomorphic components

Monitoring			Frequency of
Parameter	Metric	Performance Criteria	Monitoring
Wave energy	Sea-swell wave conditions	Decreased wave frequency	Annually in years
before reaching reef and leeward of the reef	(heights, periods and directions) Low frequency wave motions Wave setup	Decreased wave energy	1-5 after implementation
		(-)increased (long waves) surf beat	
		(-)increased low frequency wave	
		resonance	
		reduced swell	
Nearshore	Mean currents in the lee of	Nearshore current patterns	Annually in years
currents	reefs	conducive to beach accretion	1-5 after
		(rather than erosion)	implementation
Shoreline creation	shoreline loss/gain	should exceed minimum accepted	
(sediment		design criteria	
accretion)			
Shoreline erosion		should be stable or decreasing	
		relative to reference sites	

Monitoring and Maintenance

Biological and longevity components

Monitoring Parameter	Metric	Performance Criteria	Frequency of Monitoring
Reef sustainability	reef aerial dimension species survival	increase in spatial footprint water quality parameters in range for species survival	Dependent on reef type and biologic growth rates
Coral reef sustainability	coral density coral size coral survival rate	increase in coral density increase in coral size maintain or exceed design survivorship successful recruitment of new corals disease resistance	Decadal timescales
SAV, mangrove, and marsh enhancement leeward of reef	vegetation cover	increase in vegetation	

Monitoring and adaptation

If at any time in design life acceptable performance is not achieved, adaptive actions must be taken.

Time

Costs/Benefits

Mean Building Cost

- Tropical breakwater : \$456 to \$188,817 per meter (median ~\$20K)
- Structural coral reef restoration project: \$20 to \$155,000 per meter (median \$1300)

The global flood protection savings provided by coral reefs

Michael W. Beck 🏁, Iñigo J. Losada, Pelayo Menéndez, Borja G. Reguero, Pedro Díaz-Simal & Felipe Fernández

 Nature Communications 9, Article number: 2186 (2018)
 Download Citation ±

 4845
 Accesses
 21
 Citations
 463
 Altmetric
 Metrics ≫

Cost/Benefits

Annual protection provided by U.S. coral reefs:

- Avoided flooding to more than 18,180 people
- Avoided direct flood damages of more than \$825 million (>5,600 buildings)
- Avoided flooding to more than 33 critical infrastructure facilities,
- Avoided indirect damages of more than \$699 million in economic activity of individuals and more than \$272 million in avoided business interruption.

Storlazzi et al 2019

Cost/Benefits

Annual protection provided by U.S. coral reefs off Florida and Puerto Rico more than **9,800 people** and **\$859 million**

Reef restoration and NNBF in Florida and Puerto Rico: adds more than **3,100 people** and **\$272.9 million**

Case study

Hybrid reef in Grenville Bay, Grenada

- Goal: reduce coastal flooding / erosion + support biodiversity
- Community built hybrid reef to raise the degraded reef crest
- Outplanted corals to aid reef establishment
- Post-deployment monitoring

Source: The Nature Conservancy & Borja Reguero

Concluding thoughts

- Natural and nature-based reef structures provide comparable coastal protection to conventional engineered structures
- Reefs provide additional benefits (fisheries, tourism, water quality improvement)
- Unlike engineered structures, natural reefs can be self-sustaining (keep pace with SLR when healthy)

Questions?

EngineeringWithNature.org

Download

- Executive Summary (70 pages)
- International Guidelines on NNBF for Flood Risk Management (1,000 pages)

