

Engineering With Nature

US Army Corps of Engineers®

Engineering With Nature: A Systems Design Approach

Presenter: Tiffany K. Cheng, PE USACE San Francisco District (SPN) Tuesday, September 13th, 2022 ASBPA, Long Beach, CA

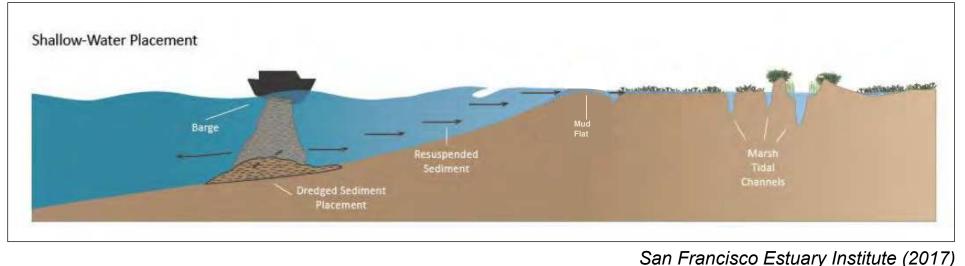
Overview

- Introduction
 - Tiffany K. Cheng, PE, Senior Coastal Engineer, USACE San Francisco District (SPN)
 - EWN Proving Ground
 - Develop and implement innovative EWN techniques in the District's civil works program
 - Presentation topics:
 - Examples of NNBF
 - Engineering Design Considerations
 - Guiding Questions for the Engineer
 - Framework: Siting/suitability, key design parameters, project goals + benefits, rating function + performance
 - Wrap-up/Questions

Shifting Baselines ... Shifting Approaches

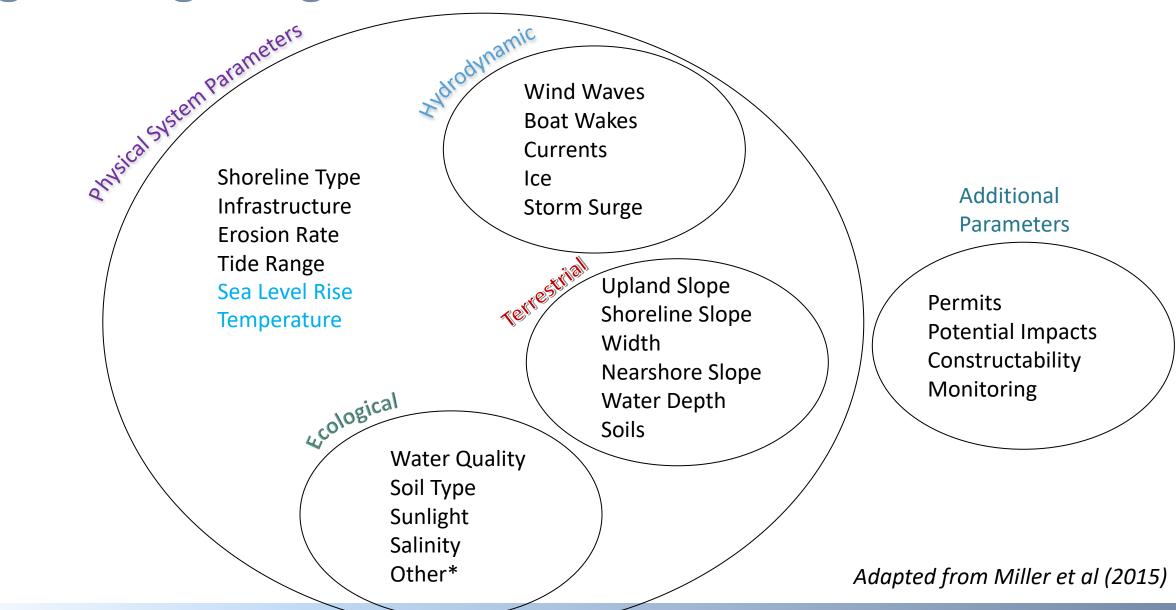
- Early coastal engineering and management motivated by transportation, commerce and military advantage → traditional, armored structures
- Natural and nature-based features (NNBF) can deliver multiple co-benefits to coastal projects
 - More adaptive and cost-effective than traditional armoring, when deployed appropriately
- Goal: Not just minimizing P(Failure) ... Engineer the conditions for dynamic equilibrium

Examples of Natural and Nature-Based Features

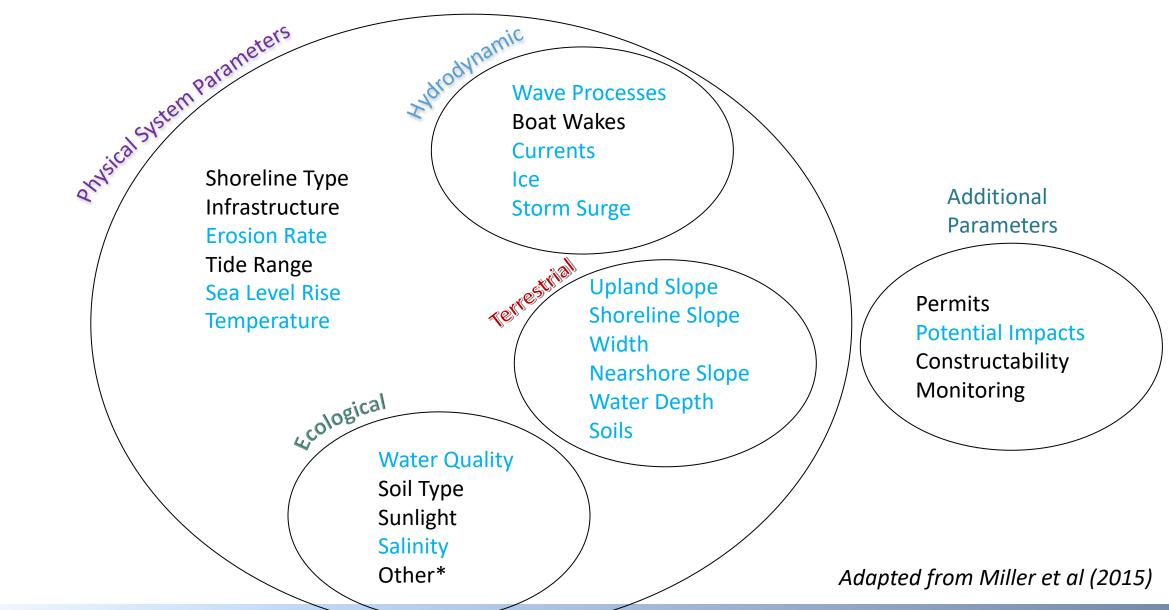

Open Coast

Estuarine

- Vegetated Dunes
- Dynamic Revetment/Cobble Berm
- Native Oyster Reefs
- Eelgrass Plantings
- Tidal Bench/Horizontal Levee
- Marsh Sill
- Nature-based solutions can also include working with natural processes
- Ex.) Strategic sediment placement USACE Section 1122 Pilot Study

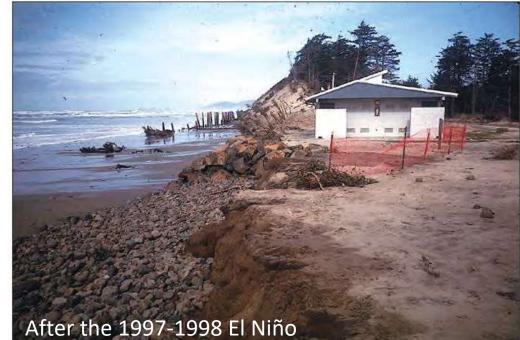


Surfer's Point Managed Shoreline Retreat


EWN.

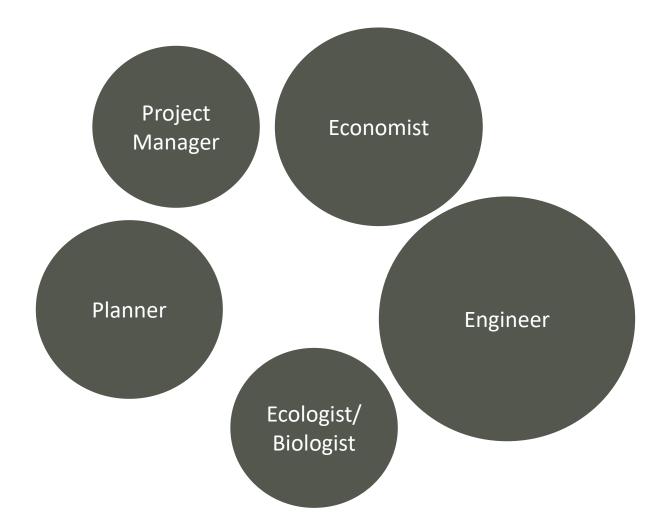
Engineering Design Considerations

Engineering Design Considerations



Case Study #1: Cape Lookout State Park

Cape Lookout State Park, Tillamook, OR Site Characterization:


- Open coast, high wave energy exposure
 - Winter wave heights ~ 20+ ft
 - ~45 ft wave heights during March 1999 storm
- Project location is an erosion "hot spot", due to El Niño winter storm patterns and location north of a headland

Komar and Allan (2010) **Physical Shore Response** Functional Response **Physical Processes Drivers** Alongshore sediment transport Sea Level Rise Loss of public to the north **Erosion of sandy** access and Extreme Weather beach and Storm surge recreation; Loss of (El Niño + winter adjacent property Wave breaking at habitat function sea cliffs and Intervention storms)

Guiding Questions for the Engineer

<u>Keep It Simple Stupid @:</u>

- 1. Are NNBF **suitable** at my site?
- 2. How much **space** and **materials** are needed?
- 3. Will NNBF **work** (and how well)?
- 4. And for how long?

Siting and Suitability

- Appropriate siting of nature-based solutions is a major factor in their longevity/effectiveness
 - Available fetch → Wave energy exposure at site
 - Space for landward migration
 - Sediment supply
- Regional tools local and landscape-scale opportunities
 - NOAA Coastal Flood Exposure Mapper
 - The Nature Conservancy Coastal Resilience (state-level)
 - San Francisco Bay Adaptation Atlas
 - Others ...

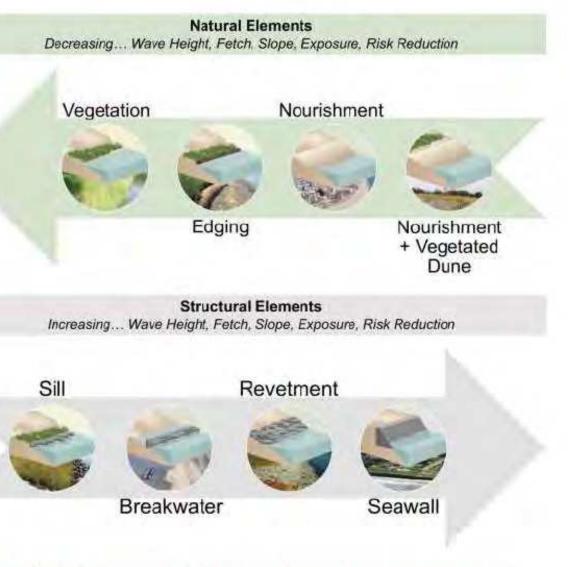
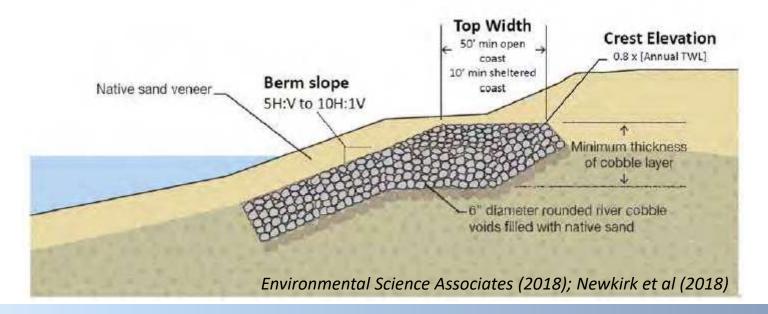


Figure 1-1. Nature-based solutions consist of varying degrees of natural, nature-based, and structural elements depending on the setting, exposure to wave action, and resilience needs (adapted with modifications from SAGE 2017).

	Shore Type / Nature- Based Adaptation Measure	Dune	Coarse- Grained Berm	Marsh Sill	Tidal Bench	Oyster Reef	Eelgrass Bed
	Tidal Marshes	Laws	Low	High	High	High	High
(aves)	Coarse-Grained Beaches	Medium	High	High	High	High	High
Vind-M	Armored Shorelines	LOW	Medium	Low	Low	Medium	Medium
ater (V	Filled Reclaimed Areas	Low	High	Medium	Medium	Medium	Medium
red Wi	Earthen Levees and Dikes*	LOW	Medium	Medium	High	Medium	Medium
Sheltered Water (Wind-Waves)	Tidal Flats and Mudflats	Low	Low	High	High	High	High
	Estuaries and Baylands	Low	High	High	High	High	High


TABLE 3

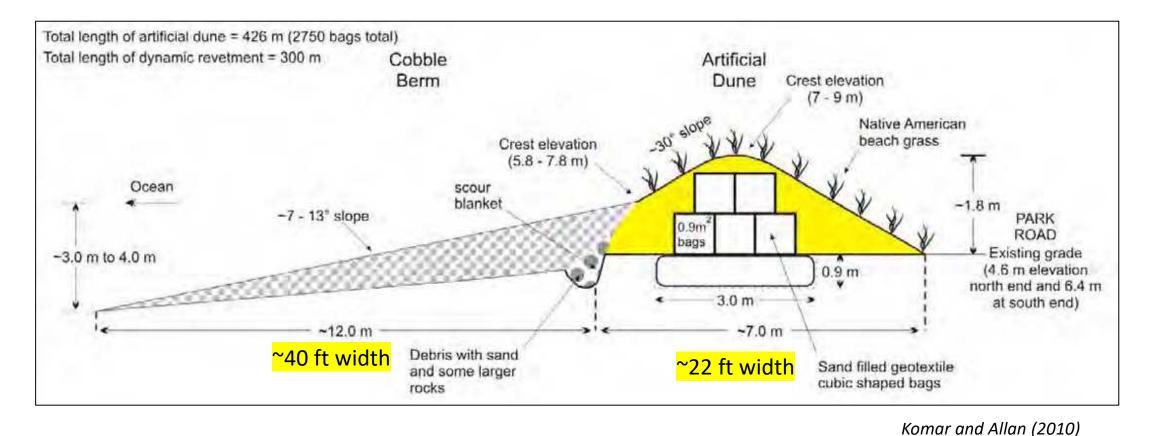
SF Bay Trail Risk Assessment and Adaptation Prioritization Plan (RAAPP) (2021)

Key Design Parameters

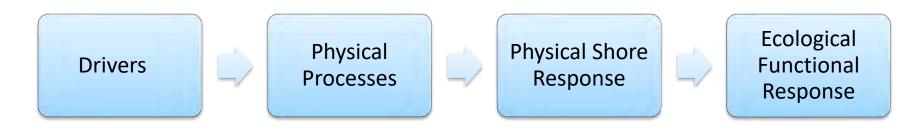
- Relate key design parameters to site-specific physical parameters
 - Location in nearshore/tidal profile
 - Planform space, e.g. minimum alongshore and cross-shore dimensions to provide benefits
 - Volume of materials required
- Example: Dynamic revetment/cobble berm flood protection
- Because water levels control both flooding and wave exposure, design of coastal engineering solutions require evaluating the total water level (TWL)
- TWL = Regional Mean Sea Level + Astronomic Tides + Non-Tidal Residuals + Wave Runup

Nature-Based Adaptation Measure	Slope Range	Min. Alongshore Dimension (ft)	Min. Cross-shore Dimension (ft)	Location within tidal profile
Dunes		100 ft	100-200 ft for dune footprint, +50 ft behind dune footprint	Backshore
Coarse-Grained Berm	5H:1V to 10H:1V on bayward side, 3H:1V or flatter on landward side	10 ft	45 ft	Foreshore – 0.8 x TWL (crest elev.)
Marsh Sill	8H:1V to 10H:1V	30 ft	10 ft	
Tidal Bench	Minimum 7H:1V slope or gentler		30 ft	MLLW to 10-yr TWL
Native Oyster Reefs	-	9 1973)		+/- 2 ft of MLLW
Eelgrass Beds	×.	180		Low intertidal (+1 ft MLW) to subtidal (< MLLW)

SPATIAL REQUIREMENTS AND LOCATION WITHIN TIDAL PROFILE BY ADAPTATION MEASURE


SOURCE: ESA, 2018; Newkirk et al., 2018

Newkirk, Sarah, Sam Veloz, Maya Hayden, Walter Heady, Kelly Leo, Jenna Judge, Robert Battalio, Tiffany Cheng, Tara Ursell, Mary Small. (The Nature Conservancy and Point Blue Conservation Science). 2018. Toward Natural Infrastructure to Manage Shoreline


Example: Dynamic Revetment + Dunes at Cape Lookout State Park

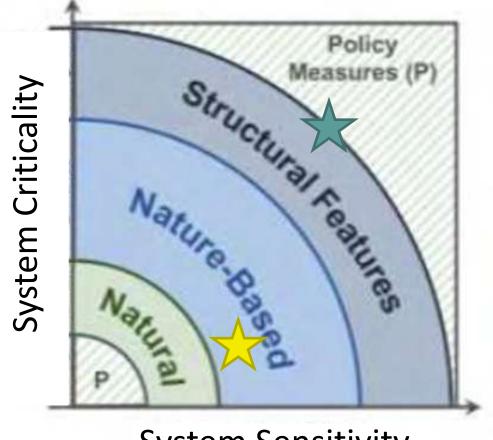
- **Project Goals:** Protect park recreational assets from flooding and preserve recreational use and aesthetic character of shoreline
- Solution: Hybrid nature-based solution with dynamic revetment and restored foredune
- "Coupling" the measures allowed for downscaling of footprint

Case Study #2: SF Bay Living Shorelines Project

Some coastal projects have enhancing system ecology as the primary goal and objectives.

Example:

- SF Bay Living Shorelines Project (part of the Subtidal Habitat Goals Project)
- Use of oyster reefs and eelgrass plantings to increase habitat value and ecosystem resilience
- NNBF provide wave calming and sediment trapping functions
- "Estuary rollover" buffer tidal wetlands and habitat migration


San Francisco Bay Living Shorelines Project (SF Bay Subtidal Goals); Photo: Michael Short

NNBF – Rating Function and Performance

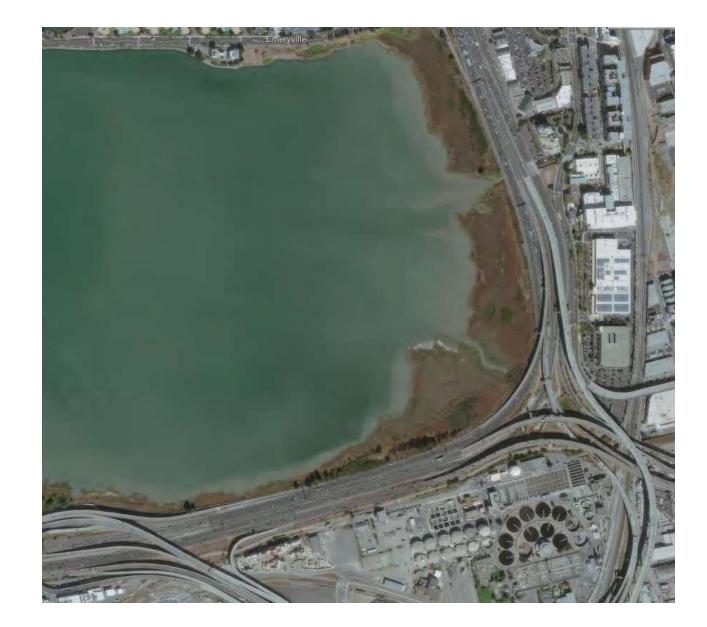
- Estimate level of protection or risk reduction provided by NNBF
 - Empirical formulas for smaller, standalone features (e.g. marsh sill, cobble berm)
 - Landscape-scale features/processes can and should be evaluated with more sophisticated tools e.g. hydrodynamic modeling
- NNBF one component in adaptation strategy for a shore segment, can be hybrid
- Define thresholds (e.g. amount of SLR) along adaptation pathway that may trigger policy measures (e.g. relocate, elevate)

System Sensitivity (to waves, flooding, erosion/shoreline retreat, etc.) Wastewater Treatment Plant
High Criticality, Moderate-High Sensitivity
Retrofit and elevate infrastructure, and
eventually relocate entire system

Recreational Trail

Low Criticality, Moderate Sensitivity

Use nature-based solutions to provide wave attenuation and erosion mitigation for trail shoreline; determine threshold for setting back and elevating trail **Example:** SF Bay Trail Risk Assessment and


Adaptation Prioritization Plan (RAAPP) (2021)

Adapted from FHWA Nature-Based Solutions for Coastal Highways (2022)

Looking Ahead

- EWN is still a young field (< 40 years), with emerging tools and guidance
 - New and existing place-based tools are actively being developed and refined
- Challenges at organizational level in developing protocols around adaptive management and benefits quantification
- Long-term monitoring information is key to evaluating project success and outcomes in their specific contexts
 - Pre-construction baseline
 - Construction (as-built)
 - Post-construction (performance)

US Army Corps of Engineers®

THANK YOU! Questions/comments/feedback are welcome.

Contact: Tiffany.K.Cheng@usace.army.mil

Acknowledgments:

Julie Beagle, Environmental Section Planning Chief, USACE SPN