

US Army Corps of Engineers®

Coastal Wetlands and NNBF RAE Workshop, New Orleans, 12.08.22

Jacob F. Berkowitz, PhD, CPSS, PWS US Engineer Research and Development Center Jacob.F.Berkowitz@usace.army.mil @wetlandsoil (@Wetlands_Team)

Coastal Wetlands and NNBF - Topics

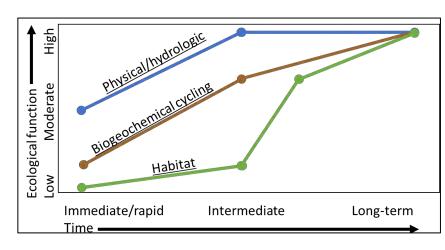
1) Guidelines

Coastal wetlands: Chapter 10

Focus on flood risk &

erosion management

2) Backcasting


Trajectory of NNBF wetlands after >40 yrs

More inclusive view

3) Paradigm-forcing

Moving from reference base to function, goods, & services design criteria

Holistic future perspective

What types of NNBF coastal wetlands are we missing?

Cattail marsh 1.3-2.6 ppt

Blackneedle rush marsh >6.4 ppt

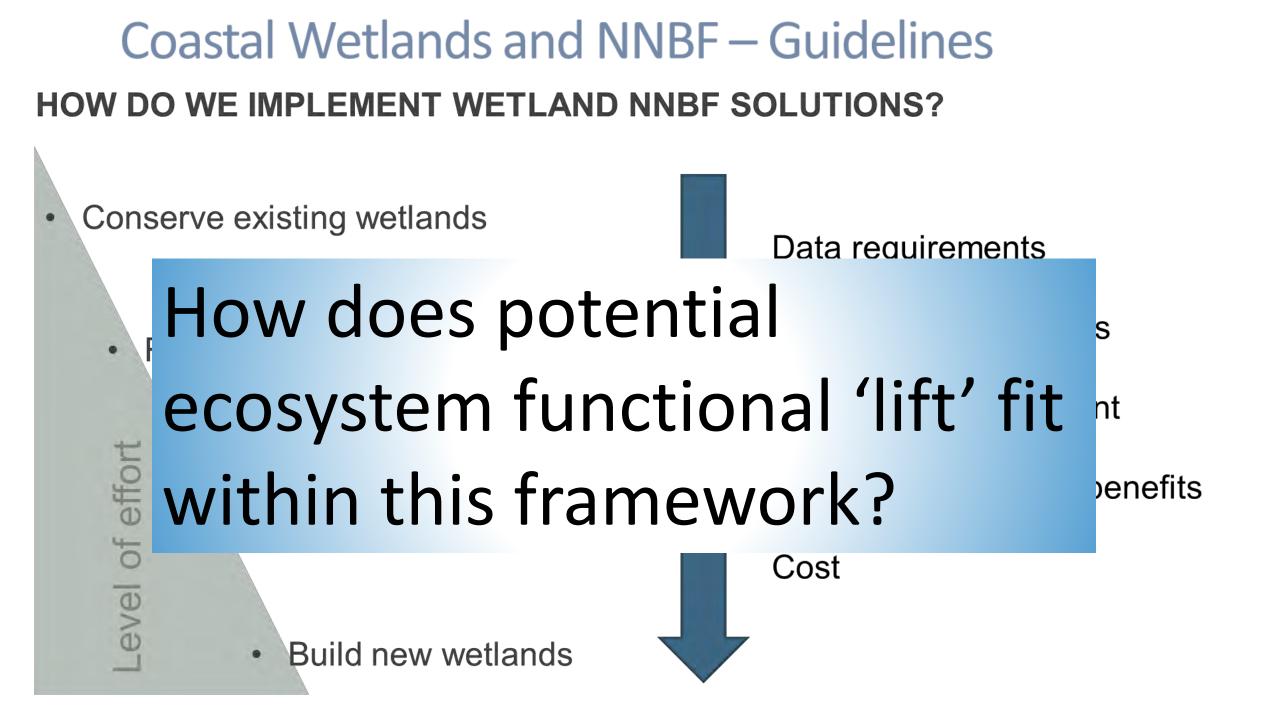
Tidal shrub community 2.6-6.4 ppt

Mangroves* 3-27 ppt

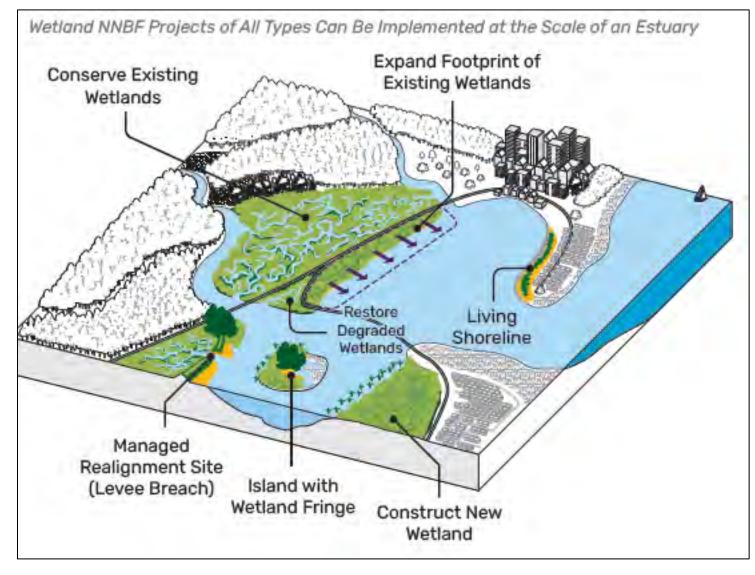
Coastal Wetlands and NNBF – Guideline considerations

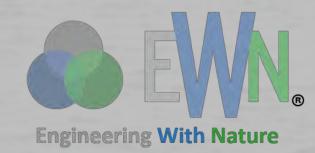
EWN.

Coastal Wetlands and NNBF – Guidelines Key messages (10)


- 1. Reduce flood & erosion risk increased friction
- 2. Accomplished by conservation, restoration, creation*
- 3. Performance → location, geometry/geomorphology, storm profile (water level, wave height & period)
- 4. Wave reduction \rightarrow topography, vegetation, storm profile
- 5. Surge reduction \rightarrow bi-directional (width & extent/length)

Coastal Wetlands and NNBF – Guidelines Key messages (10)


- 6. Flood water attenuation \rightarrow location & design (storage)
- 7. State of the science \rightarrow more than other NNBF arenas
- 8. Can be self sustaining → Sediment supply, hydropattern, salinity, primary productivity... SLR, subsidence, decomp
- 9. Persistence \rightarrow past and present \neq future (sacrificial)
- 10. Performance change over time → vegetation, storm damage, recovery, and maintenance requirements


Coastal Wetlands and NNBF – Guidelines

Few studies quantify FRM benefits US coast \$3200/ha-yr Saved \$2-36M/ha over 30 yrs \rightarrow location, location Intact wetlands \rightarrow 20-30% reduced H. Sandy damage

What are other critical considerations?

Resiliency to stressors Disturbance Surrounding landscape (LCLUC) *Each impact NNBF opportunities, risks

Coastal Wetlands and NNBF – Guidelines **HOW DO YOU DESIGN A WETLAND NNBF SOLUTION?** Focus on the aspects of the design you can control. **Design parameter Performance factors** Location in estuary Size and configuration (x,y) Platform elevation What is the #1 thing (z)

Channel network out of our control?

VegetationSpecies, height, shape, density, flexibility, roots, distributionSediment propertiesGrain size, organic matter, bulk density, shear strengthNearshore
bathymetryDepth, slope, sediment properties of adjacent subtidal mud/sand flats
Proximity to deep waterProximity to
traditional defensesDistance to defense, configuration and geometry of defense

Coastal Wetlands and NNBF – Guidelines

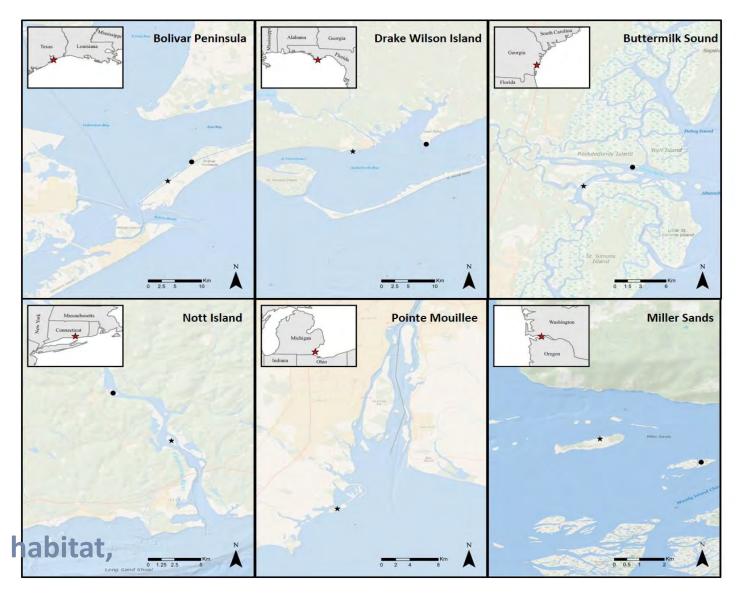
WETLAND NNBF: GUIDING PRINCIPLES AND SUMMARY

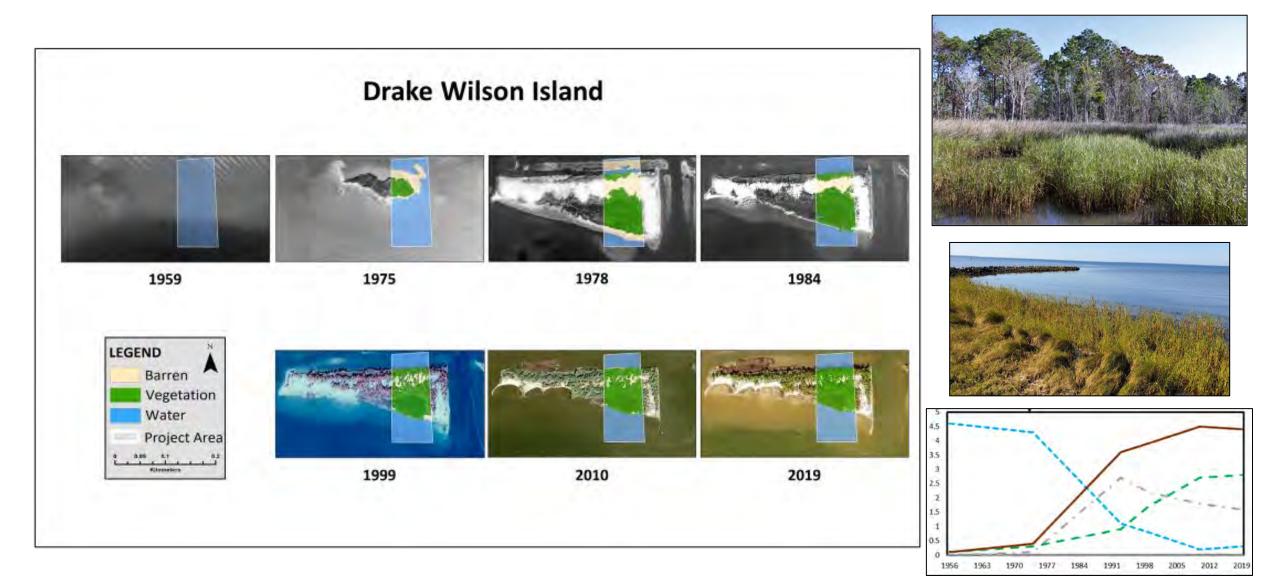
- Wetland NNBF combines aspects of flood/erosion risk management and wetland restoration.
- FRM capacity of wetlands depends on critical biophysical and geomorphological characteristics *including the location in the landscape.*
- The temporal and spatial dynamics of wetlands need to be considered.
- Wetland design solutions are diverse.
- Monitoring and maintenance are critical.
- Key questions remain to be addressed.
 - Sustainability, cost-benefit, performance, co-benefits

Coastal Wetlands and NNBF – Backcasting

-Assess long-term benefits of NNBF wetlands created using dredged material

-Six wetland sites with a wide range of geographic and geomorphic diversity


-Focus on ecological functions related ecosystem goods and services



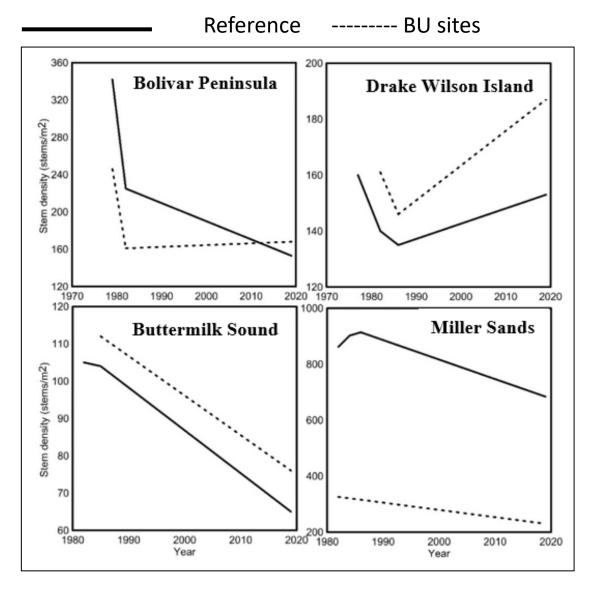
Projects constructed (1974-1978)

- **Oldest NNBF wetland with data**
- **Re-created the previous study**
- Geomorphology, vegetation, avian and soils


Restored sites became more similar to the reference areas over time

More diverse vegetation and avian communities than reference areas due to elevation gradients and a wider range of substrate characteristics

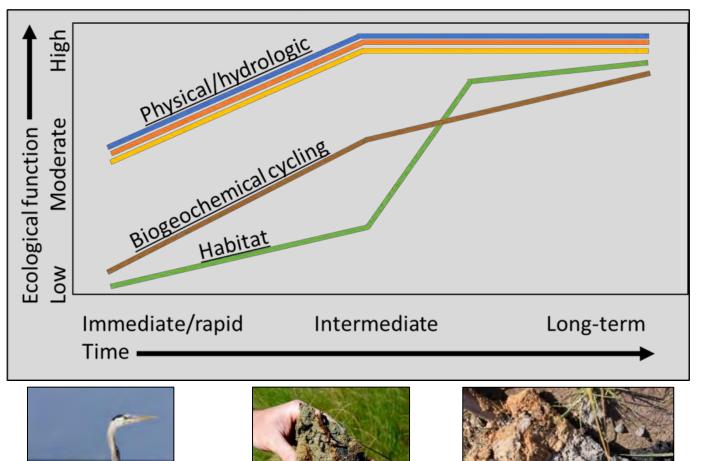
Remain on unique trajectories compared with unaltered natural wetlands

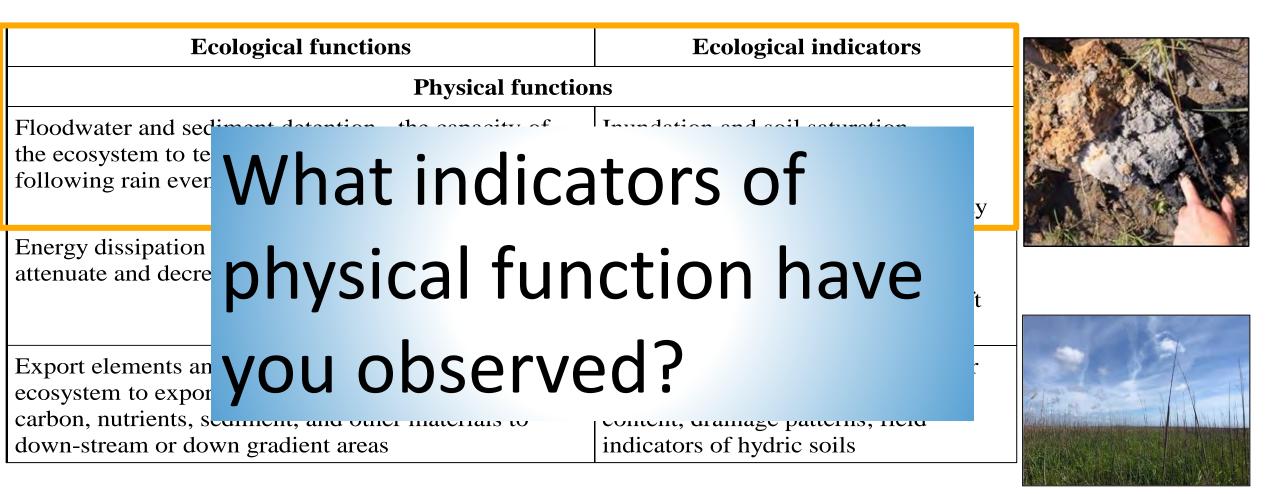

	Vegetation cor	nmunity	Dominant species richness in target					
	assemblages (o	count)	community types (count)					
Location	Beneficial	Reference	Habitat	BU	Historic	Reference		
	use (BU) site	location	type	(2019)		(2019)		
Bolivar Peninsula, TX	10	1	Low marsh	4	2	2		
Drake Wilson Island, FL	6	8	Low marsh	2	2	2		
Buttermilk Sound, GA	4	2	Marsh	3	4	3		
Nott Island, CT	10	4	Meadow	16	5	NA		
Pointe Mouillee, MI	7	NA	Marsh	7	4	NA		
Miller Sands, OR	7	1	Marsh	18	17	15		

Similar response to ecological perturbation as unaltered wetlands, despite differences in magnitude

Coastal Wetlands and NNBF – Backcasting summary

- Projects differ from natural wetlands initially
- Provide habitat for a variety of species
- Show increasing similarity with natural areas over time when natural designs are mimicked
- Fail to develop soil characteristics (e.g., C accumulation) equivalent to natural wetlands*
- Opportunities to improve site conditions through management
 - Selective species removal; sediment deposition
- Need better linkages between ecological functions, ecosystem goods and service benefits to support lifecycle analysis*




Coastal Wetlands and NNBF – Paradigm-forcing

- -Reference based metrics have value, often overvalued
- -Must move to an ecosystem functional stance
- -Historic focus on habitat, need holistic functional assessments
- -Maximize available functions to improve delivery of ecosystem goods & services
- -Inform design features

Coastal Wetlands and NNBF – Paradigm-forcing

Ecological functions	Study locations and target habitat types														
	Bolivar Peninsula, TX			Wil	Drake Wilson Sound GA Nott Isla., N						Pointe Mou., MI		ller nds,		
	rsh	ursh	ous upland	upland	d.	sh	yland	h	h	ed upland	eadow	ır marsh	eadow	sh	N 0 0025 0.05 0.1 Kilometers
	Low ma	Low marsh High marsh	High marsh Herbaceous up Woody upland		Why do wetland									nd	
Floodwater and sediment retention	X	X			Х	C _								•	
Energy dissipation	X	X			X	٢e	B	Τι	Jr	'e	SI)rc)V		le more
Export elements & compounds	X	X			Х						•		-		
Nutrient cycling	X	X	Χ	X	<u>X</u> -	F	in	C	ti	0	ns	7			
Retention and transformation of elements and compounds	x	x			Χ						113	A		λ	Sparse vegetation Sturdy Bulrush - Smooth cordgrass Marsh Xeric Slash pine - Goldenrod - Dewberry - Hairyflower spiderwort Hammock Xeric Slash pine - Greenbrier - Dune prickly-pear Woodland
Sequester carbon	Χ	X			Х	Χ		Χ	X			X		Χ	
Maintain habitat for wildlife, fisheries, and plant communities	X	X	X	X	X	X	X	X	X	X	Х	Х	X	X	

EWN.

Coastal Wetlands and NNBF – Paradigm-forcing

Connection to EGS*

How can the linkages between NNBF features & ecosystem functions be used as design criteria?

Connect for questions and discussion: Scan for pubs → Email: <u>Jacob.F.Berkowitz@usace.army.mil</u> Twitter: @Wetlandsoil Instagram: wetlands_team

