

US Army Corps of Engineers®

EWN and Nature-Based Reefs

Safra Altman, Ph.D. Safra.Altman@usace.army.mil ERDC Environmental Laboratory

Coral reefs

Shellfish reefs

Artificial and hybrid reefs

Why use reefs?

- Reefs act as the first line of defense
 - reduce the wave energy and wave-driven coastal flooding (often by >90%; Ferrario et al. 2014)
 - Reduce coastal erosion
 - Shoreline stabilization
- Co-Benefits
 - food, spawning and nursery grounds for commercially-important fish
 - Improve water quality
 - compounds for medicines
 - tourism
 - fishing, and recreational activities
 - cultural value

Reef complexity impacts wave height

Harris et al. 2018

Array of Reef Balls in the Inter-Tidal Zone Housatonic River, CT

O'Donnell, CIRCA (UCONN)

How reefs deliver flood and coastal erosion risk reduction

Effects increas	Performance factors	Potential Co-Benefit	Example
Wave energy dissipation	Elevation relative to water level, proximity to shore, width/height of reef, surface roughness/porosity, coral species (morphology & growth)	Reduce flood risk, reduce erosion, reduce damage of coastal infrastructure during storms	Fringing coral reefs in the tropical Indo-Pacific and Caribbean
Shoreline creation	Sand production, sand/sediment trapping	Coastal tourism	coral reef islands, coral atolls
Wetland enhancement and growth	Erosion reduction and shoreline stabilization creating suitable conditions for wetlands and promoting growth	Surge reduction, further wave reduction and shoreline stabilization	Oyster reefs in front of salt marshes and coral reefs in front of mangroves
Shoreline stabilization	Bathymetric configuration, surf zone, current, and sediment transport patterns	Coastal tourism through beach protection	oyster reefs adjacent to coastlines
Erosion reduction	Ability to reduce/shift wave energy, current and increase shoreline stability	Reduced damage of coastal infrastructure during storms	Reduction of erosion during tropical cyclones (e.g. Cuttler et al. 2018)

Ways that reefs reduce coastal flooding and erosion

- Reefs are effective at reducing <u>wave-driven</u> coastal flooding
- Wave attenuation by wave breaking and reef roughness
- Reefs can mitigate erosion stabilize shorelines
- Can act synergistically to enhance other NNBF (e.g. wetland growth)

	Reduce erosion	Nuisance Flooding	Short wave attenuation	Reduce force and height of medium waves	Storm surge
Oyster/Bivalve Reef	+	Data gap	+	~	~
Coral Reef	+	Data gap	+	~	~

Benefits of combined NNBF solutions

Living Breakwaters Project, Raritan Bay, NY

Note: Strategies that incorporate multiple NNBF measures provide more effective shoreline and storm protection.

Effectiveness of reefs to protect coastlines

- Wave attenuation depends on:
 - ✓ Reef dimensions
 ✓ Elevation (esp. of reef crest)
 ✓ Location relative to shore
 ✓ Roughness and porosity
 - ✓ Waves + water level conditions
- Reef degradation can reduce ability to protect coastlines

Reef NNBF Project goals and objectives

Objectives should be: Specific Measureable Achievable Relevant Timebound

Guiding Principals:

- 1. Reefs are complex physical systems
- 2. Reefs are complex ecological systems
- 3. Reefs are part of a complex socioeconomic system
- 4. Reefs are evolving systems that may require adaptation

Examples of metrics to evaluate objectives

Objective	Metric
	Reef depth profile
	Oyster/Coral cover (roughness)
	Wave attenuation
Coastal protection performance	Reef width (distance to shore)
	Angle of reef with dominant wave energy direction
	Shoreline change (erosion/accretion)
Ecological performance	Coral/Oyster cover (richness and diversity)
	Fisheries production

In What context do reefs make sense?

• Where they can provide the required engineering performance

Reefs in some areas can reduce erosion but may increase it in others.

from Narayan and Beck 2017

Where they can provide the desired co-benefits

• Where they are accepted

Co-benefits are not uniformly produced at all locations.

InVEST documentation

Education, outreach, and guidance are required to ensure reefs are accepted.

from TNC Mangroves for Coastal Defence: Guidelines for coastal managers & policy makers

Designing the reef

- Site selection and problem formulation
- Hydrodynamic performance and engineering design
- Design tools and models
- Ecological performance (designing the living layer)
- Evaluating costs and benefits of different options and stakeholder engagement

LW = low water; HW = high water; EHW = extreme high water

Adapted from Kramer, in World Bank (2016)

General Reef Design steps

Define offshore wave climate and sea levels
Assess coastal hydrodynamics at site
Quantify effects
Calculate of reef structure on hydrodynamics transport

> Spatial resolution

Temporal resolution DATA **Purpose** Geographic scale

Example Design tools

		Representative		
Spatial scale	Intended use	resolution	Hydrodynamics	Erosion
Large scale assessment	Scoping flooding and erosion risk	~100 m to kms	Regional phase-averaged wave models with empirical wave runup formulations	Empirical beach erosion models
Local scale	Assessing coastal responses to reefs (coastal flooding and erosion mitigation)		Wave models that account for breaking, refraction and diffraction	Morphological models
		~10-100 m	For example:	Examples:
			REFDIF and mild slope, Xbeach, SWASH, Boussinesq	Xbeach
Detailed reef	Conducting detailed structural design for	_	Computational Fluid Dynamics (CFD) models for detailed hydrodynamic load and performance predictions	
design	e.g. artificial reef structures	<1 m	For example: RANS (e.g. OpenFOAM), Smooth Particle Hydrodynamics (SPH)	N/A

Reef construction and monitoring performance

- Choosing materials
- Construction techniques
- Monitoring and adaptive management

Construction Considerations

- Natural materials
- Artificial materials
- Reef type

Source: Shellfish Reef as Shoreline Protection in the Netherlands;

Ysebaert. Wageningen Marine Research.

Monitoring and Maintenance

Geomorphic components

Monitoring Parameter	Metric	Performance Criteria	Frequency of Monitoring
Wave energy before reaching reef and leeward of the reef	Sea-swell wave conditions (heights, periods and directions) Low frequency wave motions Wave setup	Decreased wave frequency Decreased wave energy (-)increased (long waves) surf beat (-)increased low frequency wave resonance	Annually in years 1-5 after implementation
Nearshore currents	Mean currents in the lee of reefs	Nearshore current patterns conducive to beach accretion (rather than erosion)	Annually in years 1-5 after implementation
Shoreline creation (sediment accretion)	shoreline loss/gain	should exceed minimum accepted design criteria	
Shoreline erosion		should be stable or decreasing relative to reference sites	

Monitoring and Maintenance

Biological and longevity components

Monitoring Parameter	Metric	Performance Criteria	Frequency of Monitoring
Reef sustainability	reef aerial dimension species survival	increase in spatial footprint water quality parameters in range for species survival	Dependent on reef type and biologic growth rates
oyster reef sustainability	oyster density oyster size oyster growth rate	increase in oyster density increase in oyster size maintain or exceed design survivorship successful recruitment of new oysters disease resistance	Decadal timescales
SAV, mangrove, and marsh enhancement leeward of reef	vegetation cover	increase in vegetation	

Monitoring and adaptation

If at any time in design life acceptable performance is not achieved, adaptive actions must be taken.

Time

Costs/Benefits

Building Cost Estimates

- Nearshore, Shallow oyster reef projects: \$330 to \$1,500 per m (in 2014 USD) depending on the materials used (Herder et al. 2014).
- \$3,800 to \$2.2 million per hectare, with an average cost of approximately \$300,000 per hectare (Hernandez et al. 2018).
- Site-specific range of costs
- Can be cheaper than bulkhead

Resources needed to better determine NNBF maintenance requirements

EVN.

How quantifiably are generalized co-benefits?

USACE

EWN

RAE Participants

Comfort level with using reefs for storm reduction functions

USACE RAE Participants 5 Comfort level (5 max, 1 min) 4 3 - 3 2 1 Trap sediment Attenuate wind waves Attenuate storm waves Attenuate storm waves Attenuate storm waves **Stabilize** Trap Attenuate Attenuate Attenuate Sediment wind waves shoreline storm surge waves Coral Ovster

Rank aspects of NNBF project development

USACE

RAE Participants

Concluding thoughts

- Natural and nature-based reef structures provide comparable coastal protection to conventional engineered structures
- Reefs provide additional benefits (fisheries, tourism, water quality improvement)
- Unlike engineered structures, natural reefs can be self-sustaining (keep pace with SLR when healthy)
- Case studies are needed!
- Mid-level comfort quantifying co-benefits
- Most comfortable with using reefs for shoreline stabilization and wind wave attenuation
- Workshop participants find engineering design and analysis and construction aspects more challenging than USACE participants, and economic analysis less challenging
 → Partnering Opportunity!!

