NCCNC

Applied Research to Guide Engineering With Nature on the Great Lakes

Presentation for Engineering with Nature Great Lakes Playbook Workshop Enda Murphy & Scott Baker Ocean, Coastal & River Engineering 24 January 2023

arch Conseil national de recherches Canada

Coastal Flood & Erosion Risk on Great Lakes

Canada's disaster aid system is overwhelmed, leaving victims to rebuild on their own

For more than 50 years, homeowners and businesses hit by fires, floods or storms have had a federal program to help governments decide who pays for the cleanup. Climate change is exposing its weaknesses and renewing talk of big changes to come

Globe & Mail (2022)

Canada: Top 10 Natural Disasters for Insurance Payouts

Source: IBC Facts Book, PCS, CatrQ, Swiss Re, Munich Re & Deforme Values in 2021\$ CAN

Engineering With Nature Approaches (or NbS)

Simultaneously address multiple government policy priorities, e.g.:

- ✓ Climate mitigation
- ✓ Climate adaptation
- ✓ Disaster risk reduction
- ✓ Biodiversity

Accepted and proven internationally (NNBF Guidelines)

Canada's National Adaptation Strategy objectives (Jan 2023):

The use of nature-based solutions is accelerated to increase resilience, reduce reliance and stress on grey infrastructure, increase social benefits of nature.

Underutilized in Canada

Knowledge Gaps and Research Needs

https://www.csagroup.org/article/research/na ture-based-solutions-for-coastal-andriverine-flood-and-erosion-risk-management/

STANDARDS RESEARCH

Nature-Based Solutions for Coastal and Riverine Flood and Erosion Risk Management

October 2021

Nature-based Infrastructure for Coastal Resilience and Risk Reduction

Growing Technical Communities of Practice and Guidance

Symposium and workshop in Halifax, June 2022: https://www.transcoastaladaptations.com/news/workshop-series-2022

Cold Regions Living Shorelines Community of Practice – Great Lakes Chapter:

 First chapter meeting 13th February (<u>rachael.f.taylor@noaa.gov</u> or <u>glcoldregions@gmail.com</u>)

Design guide under development:

- Build on existing guidance, adding detail, Canadian context, and case studies
- Special session at Coastal Zone Canada Conference

Transferable Concepts, Knowledge, and Solutions

Transferable Concepts, Knowledge and Solutions

RESEARCH SUPPORTING EWN PROJECTS ON THE GREAT LAKES

Lakeview Waterfront

- Shoreline rehabilitation and flood protection
- Restore habitat and improve public linkages
- Use of clean fill from regional infrastructure projects

Lakeview Waterfront - Concept

- 1.5M m³ fill
- Habitat features with stabilizing control structures, coastal wetlands
- Headland with armored revetment
- Cobble beaches
- 3 offshore island

Lakeview Waterfront – Physical Modelling

- 1:35 scale physical model
- NRC's 50m x 30m Large Area Basin (Ottawa, Canada)
- Tested range of storm wave conditions (moderate to extreme)
- Verify and optimize stability of beaches and control structures
- Reduce design uncertainty and risk

Lakeview Waterfront - Observations

- Verification of beach material size distribution, steep berm formation in exposed areas
- Beach alignments adjusted to achieve better equilibrium

Lakeview Waterfront - Observations

- Optimization of armor stone sizing, reduced crest elevation
- Identification of areas prone to scour and erosion

Lakeview Waterfront – Benefits

- Estimated project cost savings of \$3 million compared to EA costing (more than 10x modelling costs)
- Identification of potentially problematic aspects to be addressed through final design
- Cost savings + design optimization = reduced project risk

Scarborough Waterfront

- Scarborough Bluffs, ~11km of shoreline along Lake Ontario
- SWP headlands, sand and cobble beaches, wetlands, naturalized coastal features to promote shoreline stability and provide recreational opportunities to the public

Scarborough Waterfront

- Optimized South Headland design to:
- Prevent siltation of the harbor entrance
- Improve the design elements in terms of flood resilience, overtopping, stability performance, and cost under a range of storm conditions and lake levels

Scarborough Waterfront

- Optimized North Shoreline design to:
- Provide a buffer of beach at the toe of the bluffs (maintain shore stability)
- Improve the layout and design of the rubblemound features and the planform of the beach to provide a stable yet natural appearance under a range of storm conditions and lake levels

Concluding Thoughts

- EWN approaches can play a much greater role in managing coastal flood and erosion risk on Great Lakes shorelines, while delivering multiple co-benefits
- System-based decision-making frameworks (e.g. Shoreline Management Plans) needed to guide strategic deployment and identify opportunities for hybrid (green-grey) solutions
- Leverage concepts and lessons learned from projects in comparable settings to facilitate technology transfer – benefits of bi-national collaboration
- Effective EWN solutions require **multi-disciplinary teams** opportunities to collaborate
- Targeted, applied research can inform and **de-risk** EWN solutions on the Great Lakes
- **Technical guidance** has an important role to play mainstreaming, promoting confidence in solutions, and supporting effective decision-making

THANK YOU!

Enda Murphy (enda.murphy@nrc-cnrc.gc.ca) Scott Baker (scott.baker@nrc-cnrc.gc.ca) Paul Knox (paul.knox@nrc-cnrc.gc.ca) Mitchel Provan (mitchel.provan@nrc-cnrc.gc.ca)

Contraction of the second

National Research Conseil national d Council Canada recherches Canad

onal Research Conseil national de ncil Canada recherches Canada

References

- Baker, S., Murphy, E., Cornett, A., & Knox, P. (2022). Experimental study of wave attenuation across an artificial salt marsh. *Frontiers in Built Environment*, 8.
- Baker, S., Murphy, E., & Cornett, A. (Accepted). Experimental investigation of wave interactions with hybrid dyke-marsh systems. *ICE Breakwaters 2023*, UK.
- Caldera, G., Stolle, J., Pham Van Bang, D., Cornett, A., Murphy, E., & Nistor, I. (2022). Wave attenuation of saltmarsh vegetation under storm conditions. *International Conference on Coastal Engineering*, Sydney, December 2022.
- Ghodoosipour, B., Rahman, A., Knox, P., Cornett, A., & Murphy, E. (2022). Experimental investigation of wave and current interactions with immature *Spartina alterniflora* salt marsh canopies. *39th IAHR World Congress*, Granada, June 2022.
- Henteleff, R., Markov, A., Nistor, I., & Mohammadian, A. (2022). Flexible fluid-structure interacton model of a plant for nature-based solutions. *International Conference on Coastal Engineering*, Sydney, December 2022.
- Markov, A., Henteleff, R., Stolle, J., Nistor, I., Murphy, E., & Cornett, A. (2022a). Characterizing Live Vegetation Response to Wave Forcing: A Prototype-scale Flume Experimental Program. *39th IAHR World Congress*, Granada, June 2022.
- Markov, A., Muller, M., Baker, S., Nistor, I., Murphy, E., Stolle, J., & Cornett, A. (2022b). New insights on using scaled marsh plant surrogates for wave attenuation. *International Conference on Coastal Engineering*, Sydney, December 2022.
- Provan, M., Murphy, E., Rahman, A., Morris, E., & Matfin, A. (Accepted) Experimental study of edge stabilization features and interactions with sediments and debris on a Living Dyke. *Coastal Sediments* 2023, New Orleans.
- Rahman, A., & Murphy, E. (2022). Modelling storm wave impacts and interactions with nature-based features at Metlakatla. *Natural and Nature-based Infrastructure for Coastal Resilience Symposium*, Halifax, 27 June 2022.
- Sirianni, D., Nistor, I., Rennie, C., Cornett, A., Murphy, E., Baker, S., & Hnatiw, D. (2022). Effect of gravel particle size on the reshaping of dynamic revetments. *International Conference on Coastal Engineering*, Sydney, December 2022.
- van Proosdij, D., Murphy, E., Cornett, A., Nistor, I., Mulligan, R., Côté, M., Stolle, J., Knox, P., Baker, S. (2022). Collaborative Living Laboratories to inform Canadian Design Guidance for Nature-based Solutions. *International Conference on Coastal Engineering*, Sydney, December 2022.
- Vouk, I., Pilechi, V., Provan, M., & Murphy, E. (2021). *Nature-Based Solutions for Coastal and Riverine Flood and Erosion Risk Management.* Canadian Standards Association.