

What Does Successful EWN in the Great Lakes Look Like?

Brian Majka, Restoration Ecologist Allendale, MI

What Does EWN Mean to Me?

- Uses nature-based solutions to solve societal problems while adding ecological benefit
 - Erosion
 - Flooding
 - Water quality
 - Carbon sequestration
- Requires the integration of ecological and engineering principles
- Needs to address physical ,chemical, biological, and anthropogenic factors
- Often hybridizes traditional solutions with ecologically based techniques

How do we define success?

- Solves the problem it was intended to solve
- Restoration of ecological form
- Repair of damaged ecological function/processes
- System is self sustaining over a range of conditions
- Effort reaches a predefined goal

From Forestrynepal.org

What is a *resilient* natural shoreline?

- Has physical and biological characteristics that create stability under a variety of climate-driven conditions
- This includes both low and high water conditions
- Maintains a stable form and function (this does not mean *unchanging*)
- Nature provides a template for understanding how to restore shorelines
- <u>Dynamic</u> stability

Shorelines and Resiliency— Form vs. Processes

- Form based solutions
 - Traditional engineered solutions
 - Typically designed around static or set conditions
 - Focus on static stability-not dynamic stability
- Process based solutions
 - Understands that shorelines are naturally transient and dynamic systems
 - Allow for movement of sediments and vegetation
 - Create conditions that can naturally adapt with less intervention over time
 - "Living" systems

Challenges to EWN

- Complexity
- Acceptance by traditional practitioners/regulators/public
- Physical constraints from existing infrastructure
- Lack of control over outside influences (upstream watershed effects, water level fluctuations, etc)
- Lack of adequate quantified research to inform decisions
- Permitting
- Funding for monitoring and maintenance
- Lack of measurable goals

Site Parameter Category	Site Parameter	Input
Site Location	Where is the site located?	Lake Ontario
Site Conditions	Shoreline/Bank Composition	Clay/Till
	Infrastructure Setback (feet)	None present
	Infrastructure Elevation (feet)	5'-10'
	Design Wave Height (feet)	4
	Water Level at the Time of Installation	Average
	Ice Duration/Frequency	Kare
	Shoreline Length (feet)	00
	Project Area Slope (degrees)	20
	Shoreline width (feet)	5
	Bank height (feet)	5
	Coastal Structure Presence	Shore Parallel
Ecological Features	Existing Wetlands	Present
	Significant Natural Communities	Not present
	Rare Plants/ Animals	Not present
Regulatory Considerations	OHWM	Yes
	Coastal Erosion Hazard Area	Other waterbody
	Bed or Bank Disturbance	Yes
	Federal Funding	No

Commonalities Among Successful Projects

- Balances human use with structural and ecological function
- Focus on ecosystem processes as well as form
- Adequate time for planning and implementation
- Broad stakeholder groups
- Quantified data informs design and success
- Site conditions are appropriate for the intended project
- Maintenance, monitoring, adaptive management

Commonalities Among Less Than Successful Projects

- Physical constraints from existing infrastructure
- Lack of control over outside influences (upstream watershed effects, water level fluctuations, etc)
- Poor design/poor execution
- Lack of adequate quantified research to inform decisions
- Overly weighted toward either structural or ecological principles
- Unpredictability of natural systems
- No monitoring and maintenance

Gaps and Needs

- Need reference conditions to establish project goals (otherwise, how do we know if we succeeded or not?)
 - Physical
 - Biological
 - Ecosystem processes
- Research to inform design
 - Repeat trials in different conditions
 - Quantified metrics to avoid "guesswork"
 - Lack of data can lead to overly conservative designs
- General awareness and education
- We measure success by "form" because it's easy to measure, but we should also measure function/processes

Photo: Denny Albert, OSU

Monitoring Restoration at the Muskegon Lake AOC

- In 2019, we monitored shorelines along Muskegon Lake that have been restored since 2008, including ~25,000 If and 20 different projects that had used different techniques
- Sites have seen both high and low water periods
- Some commonalities among successful sites
 - Shrubs
 - Gentle slopes
 - Maintenance

Marysville Shoreline Restoration

- St. Clair River
- Dual-purpose shoreline restoration/public use project
- Ice push from multiple directions
- Constructed in 2012
- 2000' of shoreline restoration including 1900' of seawall removal
- \$1.6 million construction cost (\$800/I.f.)

Kasperek Property Bluff Stabilization

- Private residence
- Bluff destabilized from stair construction and groundwater flows
- Limited access to bluff
- Constructed in 2007
- \$95,000 construction cost

Bear Lake Hydrologic Reconnection

- Wetland
 restoration through
 reconnection of 36
 acres of former
 celery farm to Bear
 Creek, Bear Lake,
 and Lake Michigan
- Property owned by Muskegon County
- Wetland restoration/water quality goals

Project Location,

Excavation to muck layer

Sand roads with underdrains

GEI Consultants

Brian Majka GEI Consultants, Inc. bmajka@geiconsultants.com 616-843-3635