

Dredged material can benefit SAV habitats

Emily Russ, Amy Yarnall, Matt Balazik, Safra Altman BUDM for SAV Workshop August 22, 2023

Submerged Aquatic Vegetation (SAV)

ECOSYSTEM SERVICES PROVIDED BY SEAGRASS BEDS

- SAV are submerged rooted and flowering plants
- SAV provide critical ecosystem services
 - Ecological
 - Chemical
 - Physical
 - Cultural

Modified from UNEP (2020) and Potouroglou, M., Westerveld, L. and Fylakis, G. (2020).

©2021, Seagrass Restoration Handbook – UK & Ireland, Zoological Society of London and University of Portsmouth.

US Army Corps of Engineers • Engineer Research and Development Center

Threats to SAV

- 30% area loss globally (since 1800s)
- 7% lost annually due to multiple stressors, including:
 - Poor water clarity (agricultural, urban, and industrial run-off)
 - Coastal development
 - Climate change
 - Unregulated fisheries
 - Dredging*

SAV Restoration Efforts Show Limited Success

- Can use transplants (more common) or seed broadcasting
- Larger scale projects (1000-10000 seeds/plants) more successful

Recovery of feedback i.e. planting density > density required to restore self-sustaining feedback

Irony of the test plot: unlikely to succeed

Spread of risk i.e. spatial extent of planting > spatial extent of environmental variability

van Katwijk et al., 2015

• Ensure site is appropriate for SAV!

US Army Corps of Engineers • Engineer Research and Development Center

SAV vs. Dredging

• Dredging impacts include:

- Physical removal (direct)
- Burial (direct)
- Elevated Turbidity (indirect)

Resource agencies focus on these short-term impacts to SAV

https://www.saw.usace.army.mil/Missions/Navigation/Dredging/ District-Plant-Dredging/Merritt/

US Army Corps of Engineers • Engineer Research and Development Center

*Notes on environmental impacts of dredging...

- Most dredging-related SAV loss associated with direct removal
- Turbidity plumes not greater than background levels
- Better environmental management techniques:
 - *In situ* monitoring
 - Particle tracking models to forecast turbidity
- Few studies document impacts of dredging on SAV

BUDM for SAV?

- Need innovative ideas to reach 70/30 goal
- Restoration/enhancement needed with conservation
- Losing SAV habitat to SLR (light limited)
- Create habitats that can support SAV (i.e., not light/depth limited)

UNCLASSIFIED

Need to demonstrate long-term benefits

Ideal Candidates for BUDM for SAV

- Shallow coastal/estuarine systems (i.e., plenty of light)
- Experiencing SLR but not heavy coastal development (shoreward expansion potential)

- Formerly vegetated areas that are now light limited
- TLP?
- Large-scale NNBF efforts?

Bad Candidates for BUDM for SAV

- Heavy development
- Persistent water quality issues
- High wind, wave, current activity

US Army Corps of Engineers • Engineer Research and Development Center

Case Studies: Positive Long-Term Outcomes

 SAV is resilient – (Laguna Madre, TX; Wood Island, ME)

 Dredged material can create suitable habitat (Barnegat Bay, NJ)

Altman et al., 2023

Barnegat Bay, NJ – Oyster Creek Channel

- Oyster Creek Channel Dredged ~2 years between 1981-2017
- Material placed at 2 openwater disposal areas that became islands
 - 26A (East) inactive since 2008, now a Heron Rookery
 - 26B (West)

Imagery from GoogleEarth

Barnegat Bay, NJ – 26B SAV

UNCLASSIFIED

Last placement: 1991 Next placement: 1996

Last placement: 2004 Next placement: 2009

Last placement: 2010 Next placement: 2015 Last placement: 2017*

US Army Corps of Engineers • Engineer Research and Development Center

Barnegat Bay, NJ – Site 6

WRDA 1122 Pilot Project

- Support navigation mission and use sediments beneficially
- ~1 km west of 26B, deeper, no SAV (yet)
- Started placing sediment Fall 2020

US Army Corps of Engineers • Engineer Research and Development Center

Barnegat Bay, NJ – Site 6 (May 2023)

US Army Corps of Engineers • Engineer Research and Development Center

Conclusions

- SAV provides essential ecosystem services
- SAV habitats vulnerable to multiple threats
- SAV resilient to short-term dredging impacts
- BUDM opportunities can provide long-term benefits to SAV habitats

UNCLASSIFIED

References

- Altman, Safra, Matthew Balazik, and Catherine Thomas. 2023. Eelgrass Functions, Services, and Considerations for Compensatory Mitigation. ERDC/ELTR-23-1. Vicksburg, MS: US Army Engineer Research and Development Center–Environmental Laboratory. <u>https://dx.doi.org/10.21079/11681/46833</u>.
- Katwijk, Marieke M. van, Anitra Thorhaug, Núria Marbà, Robert J. Orth, Carlos M. Duarte, Gary A. Kendrick, Inge H. J. Althuizen, et al. 2015. "Global Analysis of Seagrass Restoration: The Importance of Large-Scale Planting." Special issue, British Ecological Society Special Feature: Demography Beyond the Population. Journal of Applied Ecology 53, no. 2 (April): 567–78. <u>https://doi.org/10.1111/1365-2664.12562</u>.
- Russ, Emily R., Amy H. Yarnall, and Safra Altman. 2023. Dredged Material Can Benefit Submerged Aquatic Vegetation (SAV) Habitats. ERDC/TN EWN-23-1. Vicksburg, MS: US Army Engineer Research and Development Center–Environmental Laboratory.