Simulating Stream Flow in GSSHA

Stream Flow

- Concentrated, dynamic flow
- 1D, 2D, and 3D flow patterns, depending on stream size, shape, flow

- Overland flow
- Groundwater/interflow
- Storm surge, tidal cycles

Stream Flow in GSSHA

- 1D network of links (reaches) containing nodes (cells)
- Links represent stream reaches of uniform properties.
- Computations are performed on the nodes.

Stream Networks in GSSHA

- 1D channel flow
 - Trapezoidal
 - Natural (Break-point)
- Detention basins / reservoirs
- Hydraulic structures
 - Broad crested weirs
 - Culverts
 - Rating curves
 - Rule curves
 - Scheduled releases

Calculation of Flow

Shallow water wave equations in one direction (x)
$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[\frac{q^2}{h} \right] + \frac{gh\partial(h+z)}{\partial x} + \frac{gn^2q^2}{h^{7/3}}$$
Acceleration Advection
Pressure
Friction
Friction
x = distance
If the pressure term is large compared to the other terms then

$$\frac{gh\partial(h+z)}{\partial x} = 0$$

Which can be rearranged to put into what is called the diffusive wave equation

Equations

 Manning's Equation (Uniform open channel flow)

Friction Slope (Diffusive Wave)

Continuity

 $= \Delta t (time \, step)$

- Does not require continuous media (avoiding wet/dry issues)
- Avoids problems with shocks found in dynamic and kinematic flow equations
- Diffusion smooths transitions in flow
- Captures backwater effects
- Can be used to bring in outside boundary conditions (tidal surge)
- Has some issues
 - Manning roughness is not constant with depth
 - Can smear the water surface profile near transitions
 - Because the flow has no momentum, flow direction can change due to only small changes in water surface elevation, can become a problem

Shallow water wave equations in one direction (x)

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[\frac{q^2}{h} \right] + \frac{gh\partial(h+z)}{\partial x} + \frac{gn^2q^2}{h^{7/3}}$$

Acceleration Advection Pressure Friction

If we ignore advection, this can be rewritten as:

$$q_{t+\Delta t} = \frac{q_t - gh_t \Delta t S_f}{1 + gh_t \Delta t n^2 / h_t^{10/3}}$$

- Substituted for q based on the Manning formula for the continuity equation
- In theory, is more stable for flooded conditions because giving the water momentum should reduce rapid flow direction changes

- Finite volume method
- Forward weighted (dependent on flow direction)
- Variable time step dependent on stability criteria
- Predictor-corrector method
 - Fluxes estimated from initial heads
 - Intermediate heads estimated from flow
 - Fluxes calculated with new heads
 - Two fluxes averaged
 - Heads updated with new fluxes
- Picard iterations until flow areas converge

- Links represent a stream reach of uniform area.
- Transitions between cross sectional areas in links should be smooth.
- Include enough links to avoid abrupt changes in cross section or slope.

Selecting Node Size

- Small enough to capture required sinuosity.
- Large enough for numerical efficiency.
 - Channel flow tends to be a limiting factor in computational considerations

Data Needs

- Channels
 - Cross-section profile
 - Thalweg profile
 - Roughness
- Detention Basins
 - Min, Max, Initial water surface elevation
- Hydraulic Structures
 - Geometry, hydraulic coefficients

Data Sources

- Stream locations
 - GIS data
 - Derived from DEM data
- Stream shape
 - Surveyed data
 - Estimated
- Stream Roughness
 - Estimated from photos, calibrated

- Can be estimated relative to the land surface
- Must be relatively smooth, may contain small adverse slopes

Integrating the Channel Model: Vertical Location

- Full interaction with:
 - Overland flow
 - Groundwater

Integrating the Channel Model: Horizontal Location

Remove very short streams (1 node streams)

Integrating the Channel Model: Horizontal Location

- Adjust nodes laterally to lie in lowest nearby cells
- Caused by cell size differences between DEM and GSSHA grids.

- Start with the main channel.
- Add lower order streams as necessary.
- Stop adding lower order streams when the addition of more streams no longer affects the observations of interest.

Eau Galle River, Wisconsin

