







## **Base Model**

- We will continue working with the Eight Mile Creek Watershed
- The base model that you will open has the following processes defined:
  - Long Term Simulation
  - Distributed Infiltration
  - Distributed overland flow roughness
- You will add Sediment Transport parameters and run the model
- You will also add stream erosion and re-run the model
- As an output, we will create an erosion–deposition map for the watershed







- To start soil erosion and sediment transport process, you need to turn it on from the job control
- Turn on Soil Erosion

| GSSHA Job Control Parame | ters                               |                                  |                                    |
|--------------------------|------------------------------------|----------------------------------|------------------------------------|
| Computation parameters   | Cutlet information                 | <ul> <li>Infiltration</li> </ul> | Channel routing computation scheme |
| Total time (min): 2000   | Column: 56                         | O No infiltration                | O No routing                       |
|                          | Dawn CC                            | Steen + Ampt with soil           | Diffusive wave     Edit Parameters |
| Time step (sec): 60      | HOW: 66                            | moisture redistribution          | O MESH                             |
|                          | Slope: 0.01000                     |                                  |                                    |
| Overland flow            |                                    | Help                             | 🗖 Groundwater 🛛 Edit parameter 🔥   |
| Computation method       | - Evapotranspiration               | Sacramento Model                 | Soil erosion Edit parameter        |
| ADE 🗸                    |                                    |                                  | ✓ Long term simul Edit parameter   |
|                          | <ul> <li>No evaporation</li> </ul> | O Richard's infiltration         | Contaminant tra Edit parameter     |
| Interception             |                                    |                                  | Nutrients Edit parameter.          |
| Initial depth            |                                    | Edit Parameters                  | Storm/tile drain                   |
| Determine deeth          | Penman method                      | Soil depth (m) 0.25              |                                    |
|                          |                                    |                                  |                                    |
| Area reduction           | 🗹 Seasonal resist.                 | Top layer depth (m) 0.25         |                                    |
|                          |                                    |                                  |                                    |
| Help                     |                                    | utput Control                    |                                    |
|                          |                                    | acpar control                    |                                    |







### **Adding Sediments**

Typically three sediment sizes are used to describe the soils

0

- Sand
- Silt
- Clay





ERDC

#### **Soil Erosion Parameters**

| oughness   Interception   Hete | ntion   Evapotra | anspiration   Infi            | Itration   Initial M | foisture Soll El | osion Contami | nants Nutrient | s Continuous | Maps   Groundv | vater       |  |
|--------------------------------|------------------|-------------------------------|----------------------|------------------|---------------|----------------|--------------|----------------|-------------|--|
| Ising index map: Combined      | -                |                               |                      |                  |               |                |              |                |             |  |
|                                |                  | Generate IDs Add ID Delete ID |                      |                  |               |                |              |                |             |  |
| Soil Erosion                   |                  | -                             |                      |                  |               |                |              |                |             |  |
| ID                             | 1                | 2                             | 3                    | 4                | 5             | 6              | 7            | 8              | 9           |  |
| Description 1                  | Silt Ioam        | Loam                          | Loam                 | Silt Ioam        | Loamy sand    | Silt Ioam      | Sandy loam   | Loam           | Sandy loam  |  |
| Description2                   |                  |                               |                      |                  |               |                |              |                |             |  |
| Transport coefficient          | 0.285000         | 0.285000                      | 0.285000             | 0.285000         | 0.285000      | 0.285000       | 0.285000     | 0.285000       | 0.285000    |  |
| Transport index                | 1.300000         | 1.300000                      | 1.300000             | 1.300000         | 1.300000      | 1.300000       | 1.300000     | 1.300000       | 1.300000    |  |
| Crit. transport capacity       | 0.000200         | 0.000200                      | 0.000200             | 0.000200         | 0.000200      | 0.000200       | 0.000200     | 0.000200       | 0.000200    |  |
| Rain splash coeff              | 1200.000000      | 1200.000000                   | 1200.000000          | 1200.000000      | 1200.000000   | 1200.000000    | 1200.000000  | 1200.000000    | 1200.000000 |  |
| Runoff detachment coeff        | 0.000100         | 0.000100                      | 0.000100             | 0.000100         | 0.000100      | 0.000100       | 0.000100     | 0.000100       | 0.000100    |  |
| Runoff detachment index        | 0.400000         | 0.400000                      | 0.400000             | 0.400000         | 0.400000      | 0.400000       | 0.400000     | 0.400000       | 0.400000    |  |
| Runoff detachment crit. shear  | 0.005000         | 0.005000                      | 0.005000             | 0.005000         | 0.005000      | 0.005000       | 0.005000     | 0.005000       | 0.005000    |  |
| Erodibility coeff              | 0.650000         | 0.650000                      | 0.650000             | 0.650000         | 0.650000      | 0.650000       | 0.650000     | 0.650000       | 0.650000    |  |







- There are different output options available for sediment transport
- Select the ones that you are more interested in
- Select the net sediment transfer to see areas of erosion and deposition
- Loading all output parameters creates several datasets making the solution results big and WMS will take time to load the solution

| Gridded data sets                                                                                                              |                | Link / Node data sets                            |     |
|--------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-----|
| Data type: General                                                                                                             |                | 🔽 Channel depth                                  |     |
|                                                                                                                                | _              | 🔽 Channel flow                                   |     |
| Infiltration rate                                                                                                              | *              | Channel velocity (avg)                           |     |
| Surface soil moisture                                                                                                          | _              | 💌 Sediment flux                                  | E   |
| Groundwater elevations                                                                                                         | -              | 🔽 Net sediment transfer                          |     |
| Incremental groundwater r                                                                                                      | re             | Flood (max) depth                                |     |
| Cumulative groundwater re                                                                                                      | e              | Water surface elev                               |     |
| Volume suspended sedime                                                                                                        |                | F Pipe flow                                      |     |
| 🗹 Sedment flux                                                                                                                 |                | Pipe node depths                                 |     |
| Net sediment transfer                                                                                                          |                | F Pipe node in/out flow                          |     |
| Flood (max) depth                                                                                                              |                | Stream nitrite (NO2-)                            | in. |
| Write frequency                                                                                                                |                |                                                  |     |
| Write frequency<br>Write frequency: 180                                                                                        | (min)          |                                                  |     |
| Write frequency<br>Write frequency: 180<br>Gridded data set ouput format                                                       | (min)          |                                                  |     |
| Write frequency<br>Write frequency: 180<br>Aridded data set ouput format<br>Binary O ASCII                                     | (min)<br>Çi Gi | RASS 🔿 XMDF                                      |     |
| Write frequency<br>Write frequency: 180<br>Gridded data set ouput format<br>Binary OKASCII<br>Hydrograph                       | (min)<br>Ç/ Gl | RASS O XMDF                                      |     |
| Write frequency<br>Write frequency: 180<br>Sridded data set ouput format<br>Binary ASCII<br>Hydrograph<br>Write frequency: 180 | (min)<br>© Gl  | RASS O XMDF<br>Other<br>Suppress screen printing |     |



#### **Result Visualization**

- Outlet Sedimentgraph
- Stream Sediment Flux
- Animations / Google Earth







# **Erosion Deposition Map**

- GSSHA produces adjusted grid elevation data set based on erosion or deposition that occurred during the Erosion and transport process
- You can then subtract this adj\_elev map from original elev map and get an erosion/deposition map
- You can also get this information by selecting the "net sediment transfer" output in the output control.
- The erosion/deposition map is created as a new dataset in the 2D grid data
- If the difference is negative, there is deposition, if it is zero there not change and if it is positive, it the erosion.
- You can also look at the net sediment erosion maps





Watershed Management And Modeling



## **Changing contour options**

- You can modify the contour display option for the erosion/ deposition map
- Right click the new dataset and go to contour options
- Select *Color Fill*
- Select Specify Each Color
- Select Specify a range and check off Fill below and fill above options
- Under contour interval, change the drop down to Specified values
- Change number of contours to 3
- Edit the values in the list so that you have three range min to zero, zero and zero to max
- Change the color as red for negative, green for zero and blue for positive.
- Click OK

| Jontour Method                                        |                                    | Contour Interval    |                                               |            |       |  |  |  |
|-------------------------------------------------------|------------------------------------|---------------------|-----------------------------------------------|------------|-------|--|--|--|
| Color Fill 👻                                          |                                    |                     | cified Values                                 | 3          |       |  |  |  |
| Specify Each Color 🔹                                  | Populate Values Populate Colors.,. |                     |                                               |            |       |  |  |  |
|                                                       |                                    | F                   | Start Value                                   | End Value  | Color |  |  |  |
| Nata Bange                                            |                                    | 1                   | -5.0                                          | 0.0        | -     |  |  |  |
| Data set: default (elev)                              |                                    | 2                   | 0.0                                           | 0.0        |       |  |  |  |
| Data set                                              | Timestep                           | 3                   | 0.0                                           | 10.0       | -     |  |  |  |
| Min: 10                                               | 00                                 | - 100               |                                               |            |       |  |  |  |
| Millin 1.0                                            | 0.0                                |                     |                                               |            |       |  |  |  |
| Max: 1.0                                              | 0.0                                |                     |                                               |            |       |  |  |  |
| Max: 1.0                                              | 0.0                                |                     | ill continuous c                              | olor range |       |  |  |  |
| Max: 1.0<br>Specify a range<br>Min: -5.0              | 0.0                                | 12) F               | ill continuous c                              | olor range |       |  |  |  |
| Max: 1.0<br>Specify a range<br>Min: -5.0<br>May: 10.0 | 0.0<br>D.D<br>Fill below           | I F<br>Tran         | ill continuous c<br>sparency                  | olor tange |       |  |  |  |
| Max: 1.0<br>Specify a range<br>Min: -5.0<br>Max: 10.0 | 0.0<br>D.0<br>Fill below           | I F<br>Tran<br>Tran | ill continuous c<br>sparency<br>nsparent %: 0 | olor range |       |  |  |  |
| Max: 1.0<br>V Specify a range<br>Min: -5.0            | 0.0                                | IV F                | ill continuous c                              | olor range |       |  |  |  |

Watershed Management And Modeling



- GSSHA can simulate both overland and Stream erosion
- You can define erodible depth for the channels

0

- Select all the streams and edit properties
- Enter Max erosion to define the erodibility of the streams

| 10 m - | Lype              |   | Link/Superlink | Manning's n | Depth (m) | Bottom width (m) | Side slope (H:V) | [2] Geomery | Max erosion (m) | Groundwate |
|--------|-------------------|---|----------------|-------------|-----------|------------------|------------------|-------------|-----------------|------------|
| All    |                   | + |                |             |           | 1                |                  | F           | 1.0             |            |
| 2 Tr   | apezoidal channel | + | 4              | 0.690032    | 0.7       | 2.4              | 4.2              | Γ           | 0.35            | Generic    |
| nT e   | apezoidal channel | + | 3              | 0.119091    | 0.5       | 1.0              | 4.2              | Γ           | 0.35            | Generic    |
| 12 Tr  | apezoidal channel | + | 2              | 0.909913    | 0.6       | 1.5              | 4.2              | Γ           | 0.35            | Generic    |
| 226 Tr | apezoidal channel | + | 1              | 1.55995     | 0.5       | 0.5              | 4.3              | E.          | 0.35            | aeneric .  |
|        |                   |   |                |             | -         |                  |                  |             |                 |            |
| *      |                   | _ |                | JR.         |           |                  |                  |             |                 |            |
| Hale   |                   |   |                |             |           |                  |                  |             | - OK            |            |



Watershed Management And Modeling





