

JSDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

Effects of riparian vegetation on bank erosion

Eddy J. Langendoen

Research Hydraulic Engineer, Lead Scientist Watershed Physical Processes Research USDA, ARS, NSL Oxford, MS

Goodwin Creek Bendway, MS, January 2023

Examples of observed vegetation effects on streambank erosion

- Reduced erosion/width:
 - Smith (1976): 20,000 times more resistance to erosion of vegetated soils
 - Beeson and Doyle (1995): erosion 30 times more prevalent on non-vegetated bends
 - Burckhardt and Todd (1998): unforested migration rate 3x larger
- Increased erosion/width:
 - Davies-Colley (1997): increasing width from pasture to native to forested riparian zones.
 - Trimble (1997): grassed reaches narrower than forested reaches

Vegetation effects on streambank erosion

- Resistance to surface erosion
- Resistance to failure
- Above ground biomass (stems and leaves)
- Below ground biomass (roots)
- Vegetation affects erosion through:
 - Raindrop interception
 - Increased infiltration and infiltration capacity
 - Soil water transpiration
 - Increased surface roughness
 - Soil aggregate stability
 - Soil reinforcement

Vegetation effects on streambank erosion

- Resistance to surface erosion
- Resistance to failure
- Above ground biomass (stems and leaves)
- Below ground biomass (roots)
- Vegetation affects erosion through:
 - Raindrop interception
 - Increased infiltration and infiltration capacity
 - Soil water transpiration
 - Increased surface roughness
 - Soil aggregate stability
 - Soil reinforcement

Vegetation effects on streambank erosion

- Resistance to surface erosion
- Resistance to failure
- Above ground biomass (stems and leaves)
- Below ground biomass (roots)
- Vegetation affects erosion through:
 - Raindrop interception
 - Increased infiltration and infiltration capacity
 - Soil water transpiration
 - Increased surface roughness
 - Soil aggregate stability
 - Soil reinforcement

Effects of vegetation on streambank stability

	Mechanical	Hydrologic
Stabilizing	Increased strength due to roots	Transpiration and canopy interception
Destabilizing	Surcharge	Increased infiltration rate and capacity

Hydrological versus mechanical effects

From Simon and Collison, ESPL, 2002

Mechanical findings

- Trees add 5-20 kPa cohesion to soil, over about 0-100 cm depth (black willow least effective)
- Clump grasses add 10-40 kPa cohesion
- Lots of small roots potentially provide greater strength than a few big roots
- However most of the strength from trees actually comes from large sized roots – small roots make up too little area
- Significant strength achieved over 5-10 years growth

- 2% of rain is intercepted by riparian strip canopy (high intensity events, low canopy cover during winter/spring)
- Trees increase infiltration capacity, concentrating more water in upper 30-100 cm soil than on bare or grass-covered banks
- Trees maintain suction at depth (200-300 cm) into spring
- High matric suction at depth indicates deeper roots than found in survey (?)

Effects of vegetation on fluvial streambank erosion

 Hydraulic: modification of exerted forces on the soil surface

• Soil mechanical: modification of erosion resistance

- Bulk effect is an increased hydraulic resistance, generally reducing the spatially average flow magnitude
 - Complex interactions between tree/plant structure and flow magnitude
- Locally, it may lead to increased forces
 - Lateral and vertical mean flow acceleration
 - Increased turbulence

- Bulk effect is an increased hydraulic resistance, generally reducing the spatially average flow magnitude
 - Complex interactions between tree/plant structure and flow magnitude
- Locally, it may lead to increased forces
 - Lateral and vertical mean flow acceleration
 - Increased turbulence

- Bulk effect is an increased hydraulic resistance, generally reducing the spatially average flow magnitude
 - Complex interactions between tree/plant structure and flow magnitude
- Locally, it may lead to increased forces
 - Lateral and vertical mean flow acceleration
 - Increased turbulence

Note, vegetation may also lead to bulk sediment deposition

Mechanical effects of vegetation on streambank erosionresistance

Improved soil structure (binding) and cementing)

Soil-root bonding

Tap _ root system†	Correction coefficient			Fibrous	Correction coefficient		
	Total roots	Root binding	Root bonding	root system‡	Total roots	Root binding	Root bonding
нн	0.6067	0.9403	0.6453	ZSH	0.2979	0.6191	0.4812
HQ	0.6475	0.8840	0.7325	CMC	0.1799	0.8286	0.2171
AH	0.6848	0.9876	0.6934	BC	0.3040	0.8448	0.3598
TGH	0.3521	0.5695	0.6183	YZC	0.3176	0.8615	0.3687
HZZ	0.4883	0.8918	0.5476	BYC	0.4996	0.5580	0.8954

+ AH, Artemisia argyi Levl. Et Vant.; HH, Artemisia capillaris Thunb.; HQ, Astragalus melilotoides Pall.; HZZ, Lespedeza davurica (Laxm.) Schindl; TGH, Artemisia vestita Wall. ex Bess.

۰ð

Wang

BC, Leymus secalinus (Georgi) Tzvel; BYC, Bothriochloa ischcemum (Linn.) Keng; CMC, Stipa bungeana Trin.; YZC, Cleistogenes squarrosa (Trin.) Keng; ZSH, Poa sphondylodes Trin.

Assessment – Geotechnical stability

- Added cohesion by roots
 - Fiber bundle models such as RipRoot can quantify added cohesion
 - Extensive species database
- Added weight by trees
 - Offset by root mass reducing bulk soil weight
- Soil water movement feedback on pore-water pressure

$$au = c' + \sigma_n an \phi' - p an \phi^b$$

Assessment – Fluvial erosion

- Applied force
 - Controlled by the imposed roughness
 - Partitioning of roughness: surface roughness, drag, and cover

$$\tau = \gamma RS(1 - C_v) \frac{n'}{n_t}$$

- Resisting force
 - Generally, two or three parameters: critical shear stress and erodibility coefficient
 - Can be measured in the field or lab by a range of instrumentation

Erosion resistance parameters

$$E = K \left(\tau - \tau_c \right)$$

Assessment – Accounting for variability

- Soil erosion-resistance properties vary significantly both in space and time
- Vegetation properties vary significantly in space and time
- Best addressed using a probabilistic approach
- USACE-SPK developed a methodology for levees around the City of Sacramento

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 CRITICAL SHEAR STRESS (Pa)

Likelihood Erosion Initiates (90%) [BSTEM – Existing] Conditions]

Likelihood Erosion Progresses past levee (65%) [BSTEM – No Veg]

Full 1/325 ACE Hydrograph

> Likelihood of levee breach (0.18% or 1.8 X 10⁻³)