

Environmental and Social Benefits of Woody Vegetation

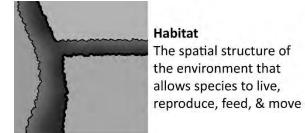
Vegetation on Levees:

Information, Data, & Approaches to Inform Best Practices Arlington, VA - May 2-3, 2023

Gary Bentrup Research Landscape Planner USDA National Agroforestry Center

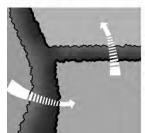
Agroforestry

A. Alley Cropping

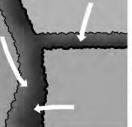

D. Windbreaks

B. Riparian Forest Buffers

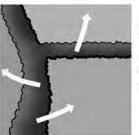
E. Silvopasture


C. Forest Farming F. Additional Applications

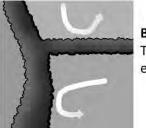
Woody Buffer Functions



Conduit The ability of the system to transport materials, energy & organisms.



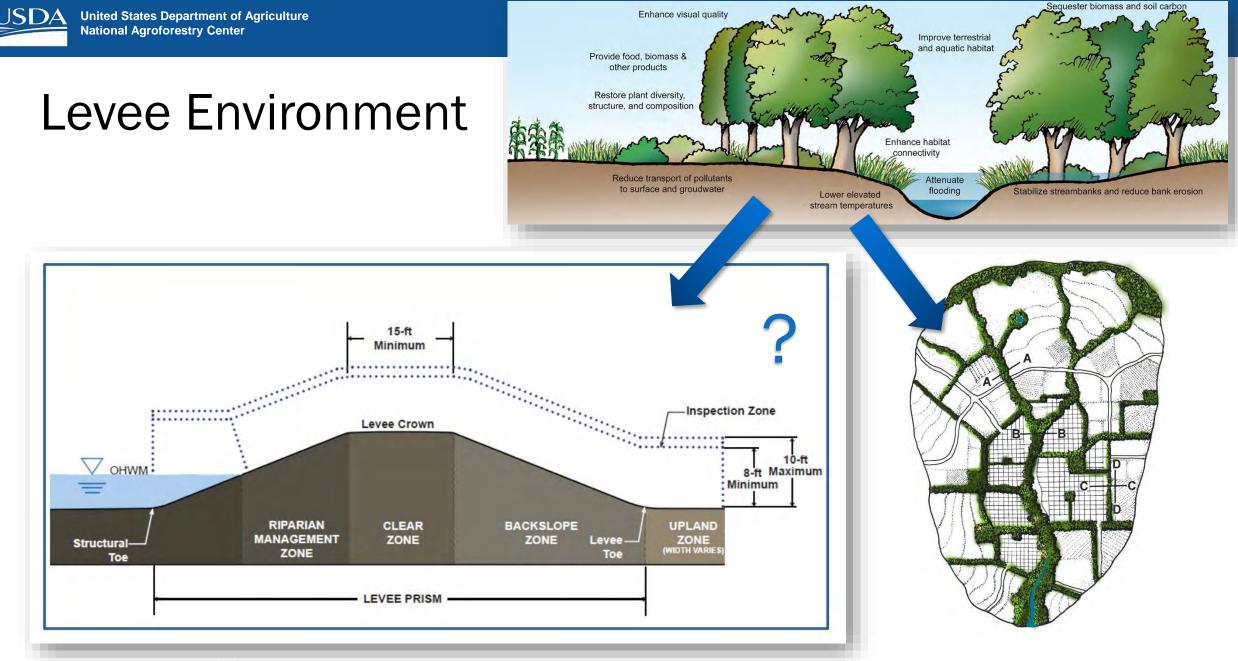
Lovell et al. E. 2022


Filter The selective filtration of materials, energy & organisms.

Sink A setting where input of materials, energy & organisms exceed output.

Source A setting where output of materials, energy & organisms exceed input.

Barrier The stoppage of materials, energy & organisms.

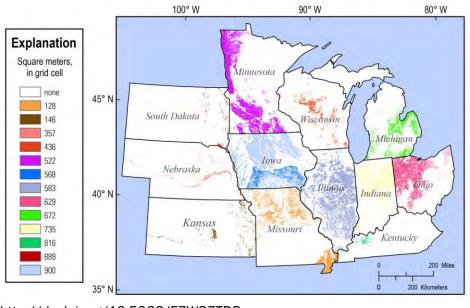


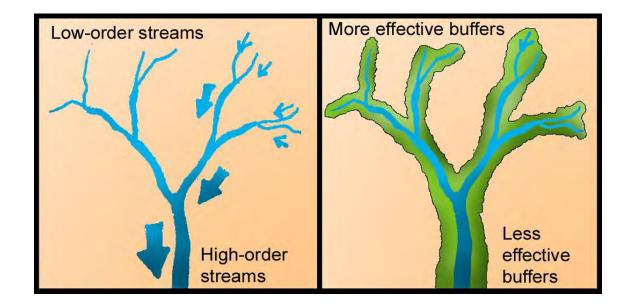
Buffer Functions

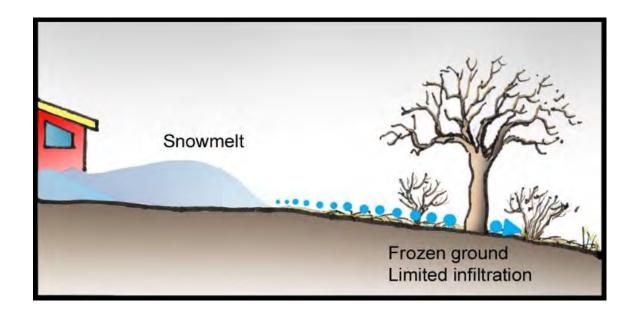
Issue and Objectives	Buffer Functions
Water Quality	
Reduce erosion and runoff of sediment, nutrients, and other potential pollutants Remove pollutants from water runoff and wind	Slow water runoff and enhance infiltration Trap pollutants in surface runoff Trap pollutants in subsurface flow Stabilize soil Reduce bank erosion
Biodiversity	
Enhance terrestrial habitat Enhance aquatic habitat	Increase habitat area Protect sensitive habitats Restore connectivity Increase access to resources Shade stream to maintain temperature
Productive Soils	
Reduce soil erosion Increase soil productivity	Reduce water runoff energy Reduce wind energy Stabilize soil Improve soil quality Remove soil pollutants

Page 12 from Conservation Buffers: Design Guidelines for Buffers, Corridors, and Greenways

Issue and Objectives	Buffer Functions
Economic Opportunities	
Provide income sources Increase economic diversity Increase economic value	Produce marketable products Reduce energy consumption Increase property values Provide alternative energy sources Provide ecosystem services
Protection and Safety	
Protect from wind or snow Increase biological control of pests Protect from flood waters Create a safe enviroment	Reduce wind energy Modify microclimate Enhance habitat for predators of pests Reduce flood water levels and erosion Reduce hazards
Aesthetics and Visual Quality	
Enhance visual quality Control noise levels Control air pollutants and odor	Enhance visual interest Screen undesirable views Screen undesirable noise Filter air pollutants and odors Separate human activities
Outdoor Recreation	
Promote nature-based recreation Use buffers as recreational trails	Increase natural area Protect natural areas Protect soil and plant resources Provide a corridor for movement Enhance recreational experience

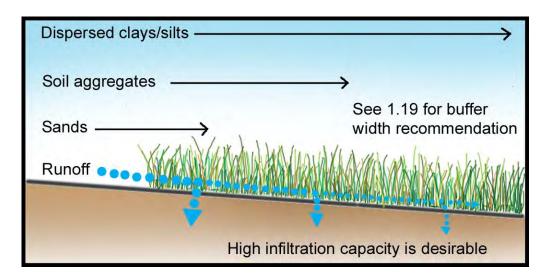

Pierce County Public Works Surface Water Management www.piercecountywa.org/water


Water Quality


- Watershed
- 🥖 Physiographic
- 🕖 Temporal

Estimates of Subsurface Tile Drainage Extent for 12 Midwest States, 2012

http://dx.doi.org/10.5066/F7W37TDP



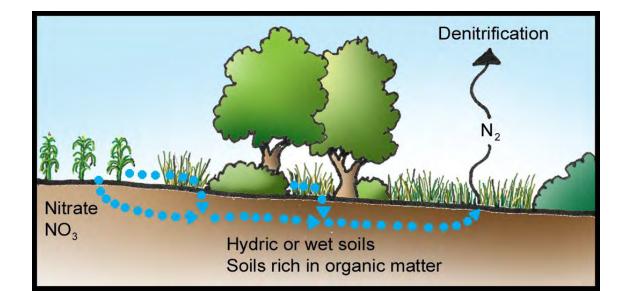
Sediment

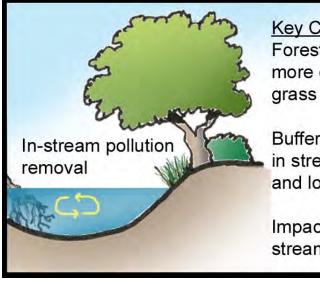
~75% or more removal Dosskey et al. 2001, Mankin et al. 2007

- High stem density
- High infiltration
- Maintenance

23% –96% In-stream sediment from bank erosion Zaimes et al. 2004, Willet et al. 2012 ,Palmer et al. 2014

- Root reinforcement
- Mixed plant forms
- Tolerant of inundation
- Toppling considerations

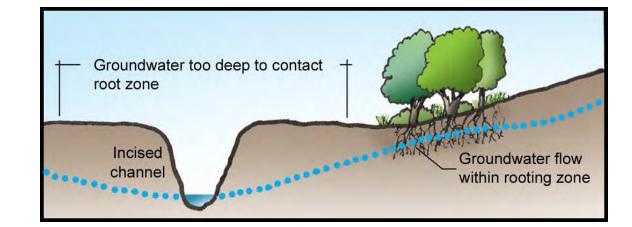



Nitrogen

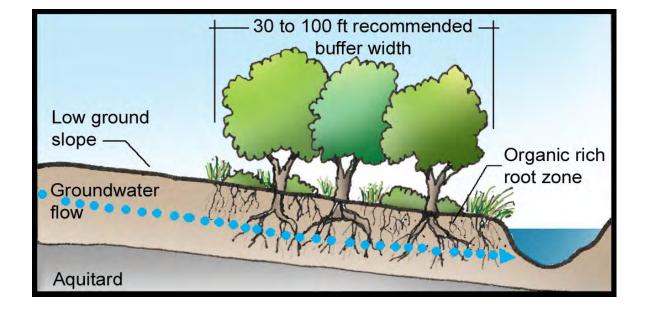
Up to 50% nitrate removal Dosskey et al. 2001, Mankin et al. 2007, King et al. 2016

Plant Uptake Denitrification

- Hydric soils
- High infiltration
- Rich organic matter
- Higher evapotranspiration


Key Considerations Forested buffers may provide more organic matter than grass buffers

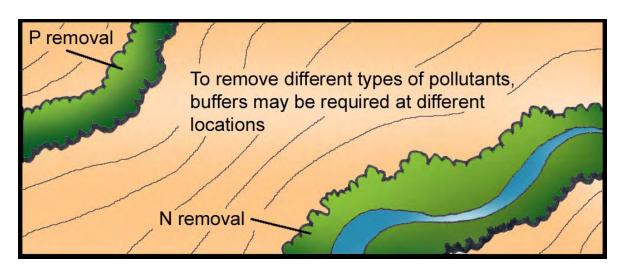
Buffers can enhance denitrification in streams with fine sediments and low organic matter

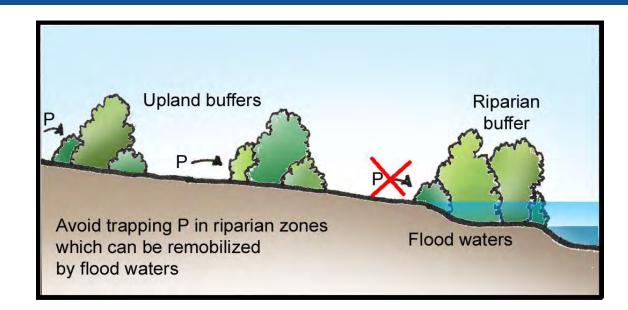

Impact is greater in smaller streams

Nitrogen

Shallow groundwater

Buffers	for Shallow Groundwater Pollution
Variable	Factors Increasing Treatment Potential
Slope	Lower ground slope (0 to 3 percent)
Depth to Water Table	Shallower water table (0 to 3 ft below surface)
Hydric Soils	Present and occupying significant width (\geq 30 feet of buffer width)
Proximity to Source	Buffer closer to the source of pollution
Soil Drainage Class (natural)	Very poorly-, poorly-, and somewhat poorly-drained ratings
Organic Matter	Soils with higher concentrations of organic matter




Phosphorus

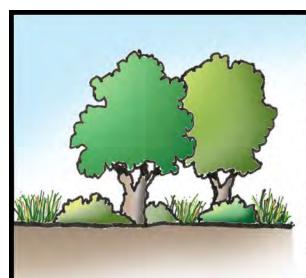
Up to 50% Total P Up to 20% Dissolved P Dosskey et al. 2001, Mankin et al. 2007

Upland capture

Biomass harvesting

Pesticides

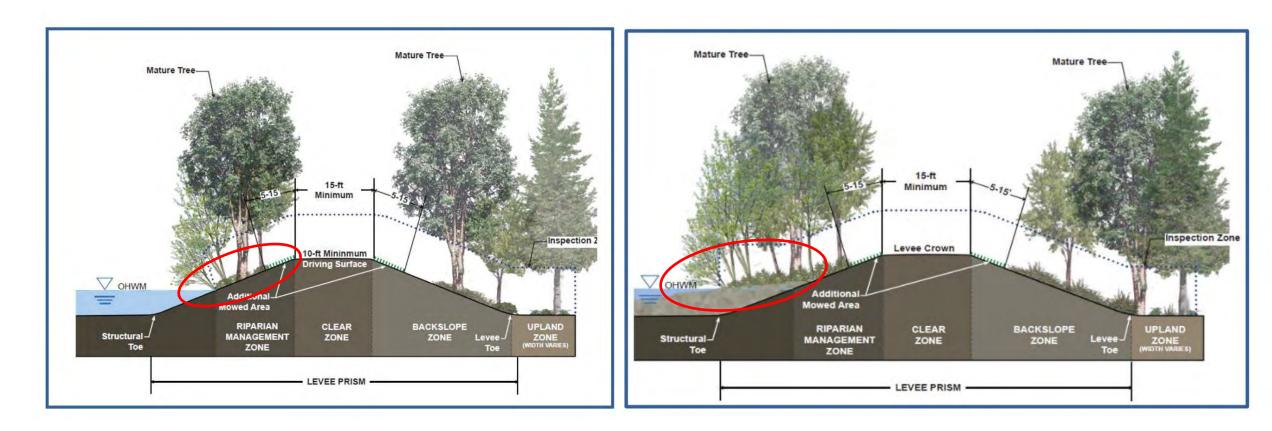
- 11% to 99% depending on chemical compounds Dosskey et al. 2001,
- Soil adsorption index
- High infiltration
- 🥑 Width

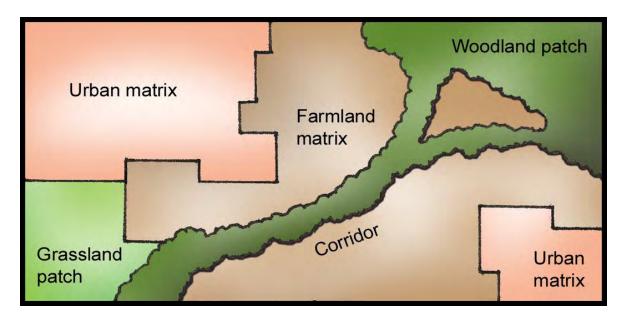

Koc Value	Adsorption and Movement	Buffer Recommendation
< 500	Adsorbs weakly, movement with water	Maximize water infiltration and runoff contact time with soil and vegetation Generally requires wider buffers
> 500	Adsorbs strongly, movement with sediment	Maximize sediment trapping in buffer Narrower buffers may be sufficient

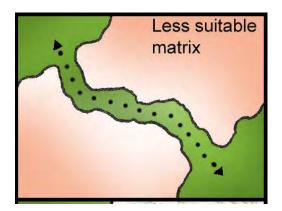
Pathogens

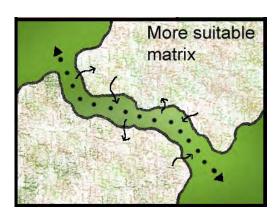
~40-70% removal Dosskey et al. 2001,Pachepskyet al. 2006

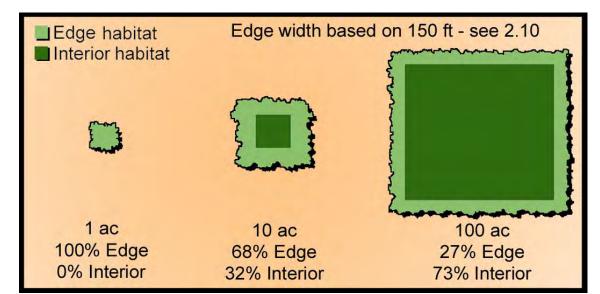
🥑 Zero discharge

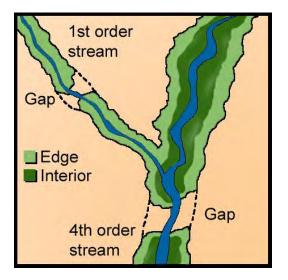

Other BMPs

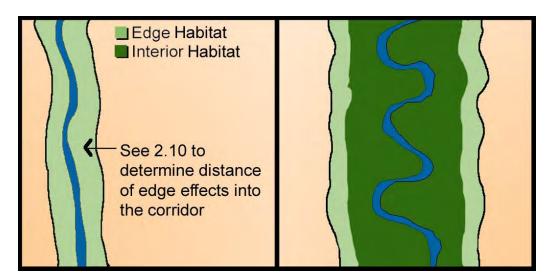

Key Considerations Maintain or increase infiltration Increase buffer widths for pesticides with low Koc values Increase buffer widths in colder climates Increase buffer widths for pesticides with high solubility Select plants with high pesticide tolerance




Water Quality - Summary

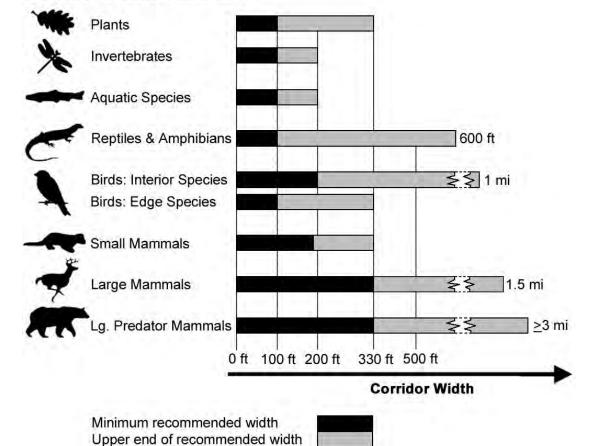

Habitat & Biodiversity





	Example Ranges of Minimum Patch Area				
	Таха	Patch Area			
-	Plants	5 to ≥ 250 ac			
×	Invertebrates	50 sq ft to \geq 2.5 ac			
C	Reptiles and Amphibians	3 to ≥ 35 ac			
1	Grassland Birds	12 to ≥ 135 ac			
¥	 Waterfowl 	<u>≥</u> 12 ac			
×	Forest Birds	5 to ≥ 95 ac			
	Small Mammals	2.5 to ≥ 25 ac			
Ą	Large Mammals	40 ac to <u>≥</u> 2 sq mi			
2	Large Predator Mammals	3.5 to ≥ 850 sq mi			

Habitat Corridors



Higher order

Edge effects

Target species

Corridor Width Summary

Pollinator Benefits

1. Foraging resources

- Timing and quality of pollen/nectar
- Hi-density of resources
- Microclimate modification

2. Habitat connectivity

Site and landscape connectivity

3. Pesticide exposure

- Spray drift barrier
- Runoff mitigation

Early Season Pollen & Nectar

Common Name	Scientific Name	March	April	May	June	July	August
Maples	Acer spp.						
Willows	Salix spp.						
Serviceberry	Amelanchier spp.						
Sassafras	Sassafras albidum						
Black cherry	Prunus serotina						
Blueberry	Vaccinium spp.						
Eastern redbud	Cercis canadensis						
Sumac	Rhus spp.						
Chokecherry	Prunus spp.						
Aronia	Aronia melanocarpa						
Cockspur hawthorn	Crataegus crus-galli						
Elderberry	Sambucus spp.						
Basswood	Tilia americana						
Wild rose	Rosa setigera						

Willows, maples, & *Prunus* spp. provided over 90% of the pollen collected in April by native bees. *Wood et al. 2018*

Quality Pollen & Nectar

Common Name	Scientific Name	Nectar	Pollen
Maples	Acer spp.	0.600	0.600
Serviceberry	Amelanchier spp.	0.500	0.400
Cherry	Prunus spp.	0.750	0.750
Oak	Quercus spp.	0.000	0.700
Brambles	Rubus spp.	0.700	0.600
Willow	Salix spp.	0.800	0.900
Elderberry	Sambucus spp.	0.300	0.600
Wild Indigo	Baptisia spp.	1.000	0.500
Goldenrod	Solidago spp.	0.900	0.800
Clover	Trifolium spp.	0.750	0.750
0=no pollen/pectar source			

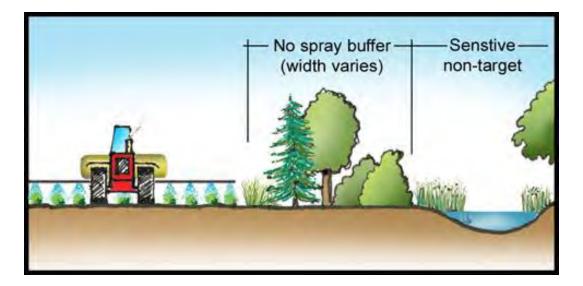
0=no pollen/nectar source 1=major pollen/nectar source Adapted from Loose et al. 2005 *Based on honey bee data Pollen specialists (oligolectic) dependent on trees & shrubs (e.g., willows, dogwoods, heaths, New Jersey tea, native roses)

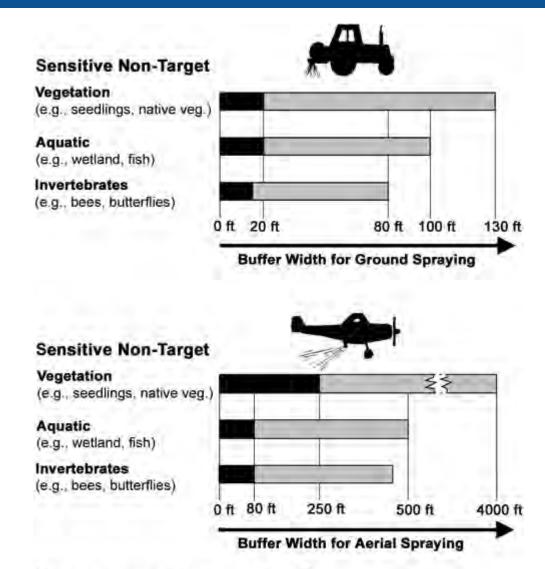
Dötterl and Vereecken 2010, Fowler 2016

 Plants with soft pithy centers provide nesting sites (e.g., elderberry, boxelder, brambles, dogwood, sumac)

Larval - Nectar Resources & Overwintering Sites

Common Name	Plant Genus	# of butterflies & moths supported
Oaks	Quercus	543
Cherry, plum	Prunus	456
Willow	Salix	455
Birch	Betula	411
Poplar	Populus	367
Crabapple	Malus	305
Maple	Acer	297
Blueberry	Vaccinium	294




Woody species supported 10 times more moth and butterfly species than herbaceous plants. Tallamy and Shropshire 2009

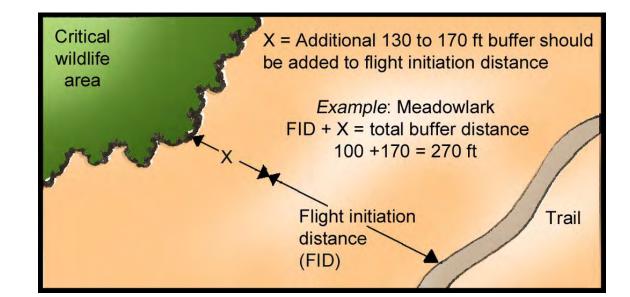
Spray Drift Control

- Fine or needle-like leaves.
- Use vegetation tolerant of the chemical
- 40-50% density to allow air passage. Several rows of vegetation are better than one dense row.
- Buffer at least two times taller than the crop

Minimum recommended width Upper end of recommended width

Aesthetics

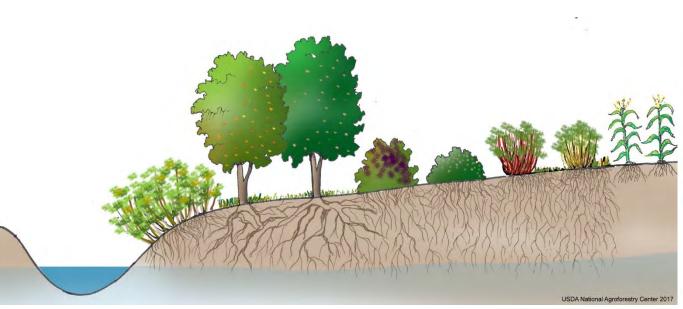
- General preference for woody vegetation
- Mixed use of evergreen and deciduous plants
- Strong color contrast in vegetation
- High density and diversity
- Signs of human control of stream areas is desirable when shifting towards urban context
- Meandering vs channelized



Extensive Buffer

Recreation

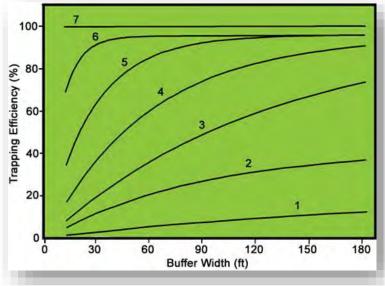
- Vegetation in support of aesthetics and wildlife
- Visual screening
- Safety and maintenance considerations


Salt Creek Levee Trail

Flight Initiation Distance		Flight Initiation Distance		
Species	Flight Distance (feet)	Species	Flight Distance (feet)	
Mule Deer	490 to 820	Golden Plovers	660	
Pronghorn	770	Great Blue Heron	660	
Elk	280 to 660	Merlin	60 to 600	
Bison	330	Prairie Falcon	60 to 600	
Golden Eagle	345 to 1280	Great Egret	330	
Rough-legged Hawk	175 to 2900	Meadowlark	100	
Bald Eagle	165 to 2900	Robin	30	

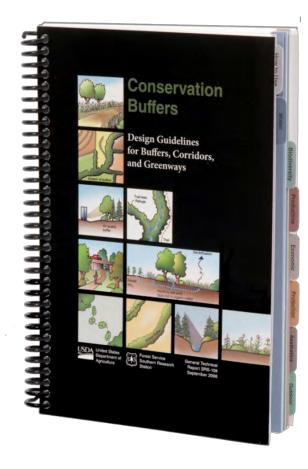
Production Buffers

- Program compatibility
- Invasive considerations
- Harvestability

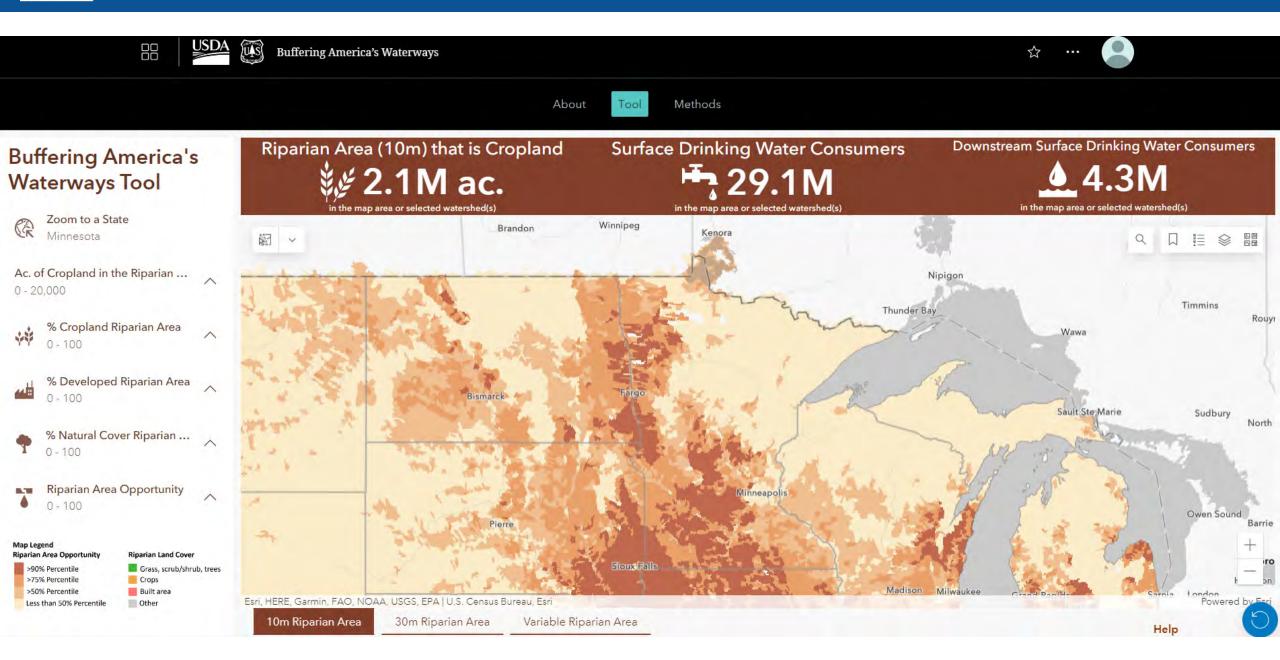


Edibles and florals harvested from multifunctional riparian forest buffers*

Pawpaw	Persimmon	Elderberry
Market Opportunities	Market Opportunities	Market Opportunities
With a tropical flavor, custard texture and high nutrient content, America's forgotten fruit can be eaten fresh or made into desserts.	The "Fruit of the Gods," sweet persimmon can be sold fresh or made into pudding, jam, dried fruit and even beer.	Coined "Nature's Medicine Chest" for its immune boosting properties, elderberries can be made into syrup, cough drops, juice, wine, jam and food coloring.
Average Prices	Average Prices	Average Prices
Fresh fruit: \$2/lb wholesale \$3+/lb retail Frozen pulp \$6/lb retail Jam \$6/oz jar retail	Fresh fruit: \$2.75/lb retail Frozen pulp: \$8+/lb retail Dried fruit: \$11+/lb retail	Juice: \$16-\$17/11oz jar Syrup: \$18/4oz jar retail Wine: \$10-\$13/bottle retail Cough drops: \$2.50/15 retail
Hazelnut	Woody Florals	Black Walnut
0000	the second second	
Market Opportunities	Market Opportunities	Market Opportunities
A great source of fiber and 'good' fats, nazelnuts can be sold in shell or shelled and made into flours, candies, butters and oils.	Woody florals, such as pussy willow and red and yellow twig dogwood, can be coppiced every 2-3 years and sold to the floral industry or used in crafts.	This multi-use tree produces valuable timber and heart-healthy nuts sold in shell or shelled.
Average Prices	Average Prices	Average Prices
In shell: \$3/lb wholesale	Cuttings: \$0.37-0.45/stem retail Wreaths: \$45+ ea retail	In shell: \$9.25/lb retail Shelled: \$12/lb retail



Function-based Tools and Resources


Buffer Width Tool

Link

http://comet-planner.com/

Total CO₂

Equivalent

56

56

Conservation Practice Standard (CPS):

Approximate Carbon Sequestration and Greenhouse Gas Emission Reductions* (tonnes CO₂ equivalent per year) 🕕

Alley Cropping (CPS 311)

- Hedgerow Planting (CPS 422)
- Multi-story Cropping (CPS 379)
- Riparian Forest Buffer (CPS 391)
- Tree/Shrub Establishment (CPS 612)
- Windbreak/Shelterbelt Establishment (CPS 380)
- Windbreak/Shelterbelt Renovation (CPS 650)

	NRCS Conservation Practices	Acreage	Carbon Dioxide
D O	Replace a Strip of Cropland Near Watercourses or Water Bodies with Woody Plants	10 ac	
	Totals	10	

place a Strip of Cropland Near tercourses or Water Bodies with Woody nts	10 ac	:	54
als	10		54

*Negative values indicate a loss of carbon or increased emissions of greenhouse gases **Values were not estimated due to limited data on reductions of greenhouse gas emissions from this practice

Download COMET-Planner Results

Methane

N.E.**

0

Nitrous

Oxide

2

2

Info													
NRCS Conservation Practices	Soil Carbon	Biomass Carbon	Fossil CO2	Biomass Burning CO2	Biomass Burning N2O	Biomass Burning CH4	Liming	Direct Soil N2O	Indirect Soil N2O	Soil CH4	Total CO ₂ Equivalent	Minimum Total Emission Reductions*	Maximum Total Emission Reductions*
Replace a Strip of Cropland Near Watercourses or Water Bodies with Woody Plants	0.47	4.93	0.00	0.00	0.00	0.00	0.00	0.16	0.02	0.00	5.59	N.E.**	N.E.**

*Minimum and maximum emission reductions represent the minimum and maximum total emissions over a range of soil, climate and management conditions within multi-county regions. Min/Max emissions are not estimated for all practices, due to limitations in quantification methods

**Values were not estimated due to limited data on reductions of greenhouse gas emissions from this practice

- Carbon Sequestration, Greenhouse Gas Reduction

- Carbon Loss, Greenhouse Gas Increase

References

Cane, J.H., Griswold, T. and Parker, F.D., 2007. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Annals of the Entomological Society of America, 100(3), pp.350-358.

Dosskey, M.G., 2001. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environmental Management, 28(5).

Dötterl, S. and Vereecken, N.J., 2010. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Canadian Journal of Zoology, 88(7), pp.668-697.

Fowler, R.E., Rotheray, E.L. and Goulson, D., 2016. Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 9(6), pp.481-494.

Hu, S., Yue, H. and Zhou, Z., 2019. Preferences for urban stream landscapes: Opportunities to promote unmanaged riparian vegetation. Urban Forestry & Urban Greening, 38, pp. 114-123. Kenwick, R.A., Shammin, M.R. and Sullivan, W.C., 2009. Preferences for riparian buffers. Landscape and Urban Planning, 91(2), pp. 88-96.

King, S.E., Osmond, D.L., Smith, J., Burchell, M.R., Dukes, M., Evans, R.O., Knies, S. and Kunickis, S., 2016. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study. Journal of environmental quality, 45(4), pp.1243-1251.

Lovell, S.T., Bentrup, G. and Stanek, E. 2022. Agroforestry at the landscape level. In: North American Agroforestry: An Integrated Science and Practice 194, p.5204514

Mankin, K.R., Ngandu, D.M., Barden, C.J., Hutchinson, S.L. and Geyer, W.A., 2007. Grass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoff 1. JAWRA Journal of the American Water Resources Association, 43(5), pp.1108-1116.

Palmer, J.A., Schilling, K.E., Isenhart, T.M., Schultz, R.C. and Tomer, M.D., 2014. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology, 209, pp.66-78.

Sullivan, W.C., Anderson, O.M. and Lovell, S.T., 2004. Agricultural buffers at the rural-urban fringe: an examination of approval by farmers, residents, and academics in the Midwestern United States. Landscape and Urban Planning, 69(2-3), pp. 299-313

Tallamy, D.W. and Shropshire, K.J., 2009. Ranking lepidopteran use of native versus introduced plants. Conservation Biology, 23(4), pp. 941-947.

Wood, T.J., Kaplan, I. and Szendrei, Z., 2018. Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Frontiers in Ecology and Evolution, 6, p.210.

Zaimes, G.N., Schultz, R.C. and Isenhart, T.M., 2004. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. Journal of Soil and Water Conservation, 59(1), pp.19-27.