The impact of woody vegetation on fluvial erosion

TESS WYNN THOMPSON, ASSOCIATE PROFESSOR

BIOLOGICAL SYSTEMS ENGINEERING, VIRGINIA TECH

For the next 30 minutes...

- Where I'm coming from
- Vocabulary
- Prior research
- Recent research
- Summary

PODCAST

NEWS

Search...

NBS ~

ENGAGEMENTS ~

Engineering With Nature

Engineering With Nature® is the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental, and social benefits through collaboration.

IMPLEMENTATION ¥

RESEARCH ~

RESOURCES ~

MORE INFO >

ABOUT ~

The difficulty lies not so much with developing new ideas as in escaping from old ones.

John Maynard Keynes

3. Wetland ET

How does bank erosion occur?

Freeze-thaw and wet-dry cycling weaken soil

Soil entrained during high flows

Mass failure from slope instability

The excess shear stress equation models fluvial erosion rate

$$E_r = K_d \left(\tau - \tau_c\right)^a$$

- $E_r = Erosion rate (L/T)$
- K_d = Erodibility coefficient (L^{2.}T/M)
- τ = Actual shear stress (M/L·T²)
- τ_c = Critical shear stress (M/L·T²)
- a = Exponent, assumed equal to 1

My vision of woody vegetation on levees

http://clipart-library.com/free/tree-with-transparent-background.html

Results from prior research

Roots in soils reduce fluvial erosion

Effects of Big Root Volume Ratio and Bulk Density on Erodibility (K_d) for Nonplastic Soils 1.0 $\log(K_d) = 0.15 - 0.13 \ln(BRVR) - 0.29 BD^{2.5}$ $n = 15, p = 0.000, r^2 = 0.727$

Wynn, T. M. and S. Mostaghimi. 2006. The effects of vegetation and soil type on streambank erosion, southwestern Virginia, USA. *JAWRA* 42(1):69-82.

Allen, D.C., B.J. Cardinale, and T.M. Wynn-Thompson. 2016. Plant biodiversity effects in reducing fluvial erosion are limited to low species diversity. *Ecology* 97(1): 17-24. doi: 10.1890/15-0800.1

Results from recent research

Do Roots Bind Soil?

Comparing the Physical and Biological Role of Plant Roots in Streambank Fluvial Erosion

Daniel J. Smith, PhD

How do plant roots influence streambank soil erosion rates?

 Impact of root fibers on nearbank velocity and turbulent stress 3. Stimulating soil microbes through organic carbon inputs A recirculating flume was modified to allow for erosion and hydrodynamics testing in a streambank setting

Photo Credit: Riley DeHority

Inserts simulating three different streambank conditions were constructed

Sand Wall (Unvegetated)

Flexible Root Wall (Herbaceous Vegetation)

Rigid Root Wall (Woody Vegetation)

Why would roots increase near-bank turbulent stress?

A function of vegetation volume per unit volume

3D velocity data and distance to bank surface were measured via a Vectrino II Acoustic Doppler Profiler (ADP)

The near-bank velocity along the rigid wall was 11% to 51% lower compared to the sand wall

Max near-bank turbulent stress was ~4x higher for the rigid wall compared to the sand wall

- Sand Wall
- Flexible Root Wall
- Rigid Root Wall

Erosion testing was also done on bare soil samples using each of the wall types

Sand Wall

Flexible Root Wall

Rigid Root Wall

6 samples per treatment

The rigid wall had ~3x higher soil erosion rate compared to the sand wall

/IRGINIA TECH.

How do plant roots influence streambank soil erosion rates?

Organic material is used as carbon source by soil microbes, stimulating the production of "sticky" compounds called EPS

EPS = "sticky" organic compounds Biofilm = microbes + EPS

EPS is primarily composed of:

- Carbohydrates
- Proteins
- Etc.

Dry and crushed grass clippings used to stimulate microbial production of EPS

0 g grass clippings

1 g grass clippings per 100 g soil (1%)

4 g grass clippings per 100 g soil (4%)

25% to 61% average reduction in soil erodibility was significantly correlated with EPS proteins

What happens when you add roots and organic matter?

	Bare soil	Flexible Synthetic Roots	Rigid Synthetic Roots	Live Roots
Unamended Soil				
Amended Soil				

Erosion reduction by fibers + microbes comparable to live roots (90 – 98% on average)

Flexible Synthetic Roots • Live Roots ▲ Rigid Synthetic Roots

a) Unamended

2x increase in average EPS proteins; primary driver of higher soil resistance

Compared to bare soil:	1% Grass	4% Grass	Synthetic Roots	1% Grass + Synthetic Roots
Soil erosion rate	25% lower	61% lower	24% to 45% lower	90% to 98% lower

Conclusion:

EPS production + synthetic root fibers = comparable reduction in erosion to vegetated soil with many roots

Overall, with all mechanisms considered together, roots reduce erosion rates

Do Roots Bind Soil?

Yes!

But EPS appear to work like "webs" that stick fibers and soil together, increasing the benefit of root binding

> Apertuni Size = 30.00 µm Date 5 Jan 2021 Time

Questions?

L'automa alend