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Abstract—Physical process-based hydrological models are
widely adopted to simulate the water quantity or quality. One of
the most commonly used hydrological models is Soil and Water
Assessment Tool (SWAT). SWAT models for a large watershed
can have over tens of thousands of Hydrological Resource Units
(HRUs) which necessitates considerable computational resources.
One way to speed up applications of the SWAT model could be
to leverage machine learning techniques to identify the crucial
features for the prediction task — feature selection. However,
majority of the feature selection techniques rely on correlations
or some form of a score metric (e.g. mutual information).
Furthermore, since correlation does not imply causation, it is
important to identify the causal features to improve the prediction
accuracy while enhancing the interpretability of machine learning
models. However, the SWAT model uses multiple data inputs
and features that typically vary by space/HRUs, but may or
may not vary over time. This makes it difficult to directly
utilize causal discovery models to infer the causal relations.
Furthermore, due to the lack of the ground truth causal graph
for the SWAT model it is difficult to comment on the validity
of the learned causal relations. To overcome these problems, we
propose a novel framework that first infers the causal relations
for the daily scale of the SWAT data using causal discovery
algorithms. Then, it utilizes a community detection module to
group similar features together for better interpretability. Finally,
it identifies the stable causal relations that appear most often
across all the timesteps and leverage them for the prediction of
the water quantity. By utilizing only the causal features for the
prediction of the target variable can lead to high accuracy as
it removes the reliance on spurious correlations. Furthermore,
we conduct extensive experiments to validate the effectiveness of
the proposed framework along with a real-world case study to
evaluate whether the selected features are interpretable or not.

Index Terms—causal discovery, feature selection, hydrological
systems, neural networks, SWAT models

I. INTRODUCTION

The physical process-based hydrology models use pre-set
equations with transient and spatial features to simulate the
river stream water quantity and quality [1]. These models
have unique advantages, such as the ability to comprehend
the mechanics driving the hydrologic model, the ability to
explain observed and simulated phenomena, and the ease of
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transferring the calibrated model features to other regional set-
tings [2]. However, the improvement of the hydrologic models
often require more descriptive features and a higher spatial
and temporal resolution [3] which increases the complexity
and computational needs of the model [4], [5].

Soil and Water Assessment Tool (SWAT) is a common
physical process-based hydrology model that simulates water
quantity and quality [6]. SWAT considers multimodal features
including fixed-spatial and transient data. The fixed-spatial
inputs include slope (typically derived from digital elevation
models or DEM), land use, and soil type. On the other
hand, the transient data includes precipitation, temperature,
land management schedules, and optional wind speed, relative
humidity and solar radiation. The SWAT model first calculates
the location-based water quality and quantity yield at the
Hydrological Resource Units (HRUs). Their calculations are
then aggregated into sub-basins and routed through river
networks based on the structure of the watershed, where sub-
sequent transformations can occur. Figure 1(d) shows the brief
flowchart of SWAT calculations on water quantity. The HRUs
in each sub-basin are defined by the user inputs mentioned
above in the format of features shown in Table I. The total
number of HRUs within a sub-basin depends on the unique
combinations of the three fixed-spatial inputs within each sub-
basin. As the SWAT model database has more than 100 soil
and land uses available to simulate (besides, users can add
new ones to the database), and the model usually consists
of more than one sub-basin, the SWAT models typically
developed for a large watershed can have over 50,000 HRUs.
This spatial discretization when coupled with daily time steps
over a decade’s horizon, may require considerable time and
computational resources.

The most common method to simplify the SWAT model
is to merge minor HRU classes within major HRU classes by
setting a land area threshold. Only those classes larger than the
area threshold are included in the model [7]. However, there
are only a limited number of studies to justify which threshold
value is proper without losing accuracy of the model [8].
Additionally, the area alone does not necessarily determine
the importance of different slope, soil type, and land use to
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Fig. 1: (a) The location of the Trinity River basin in Texas. (b) The spatial elements of the Trinity basin SWAT model such
as the sub-basins, river stream, and reservoirs (c) The HRUs in this study within the sub-basin 68. Different colors represent
various soil types. (d) The brief steps of SWAT river flow simulation. The target features in this study are in red.

the hydrological process. A better approach to simplify the
SWAT model would be to identify those features that are vital
for SWAT outputs, especially to the water quantity output
(i.e., streamflow). However, the complexity of the SWAT
model makes it nearly impossible to analytically determine the
features which cause the alteration of the simulated river flow.
Classical feature selection techniques select features based
on the correlations between predictive features and the target
variable and fail to capture causal relationships between them.
Furthermore, since causal relationships help in understanding
the underlying mechanism of a system [9], [10], identification
of causal features can lead to building interpretable and
robust prediction models. Thus, by integrating causality in the
feature selection approach one can aim to learn and identify
interpretable features vital for the prediction task. In order
to extract causal features, one needs to first infer the causal
relations from the observed data, which is a challenging task.

There has been a wide range of works developed to identify
and learn the causal features present in temporal data [11]. In
SWAT models, however, there exist features that vary across
HRUs but are constant across time (eg. soil parameterss) and
there also exist features that vary across time but are constant
across HRUs within a sub-basin (eg. temperature). Due to this
conflicting nature of the features it is infeasible to simply apply
traditional [12], [13] or temporal causal discovery methods to
infer the causal relationships. Furthermore, since the SWAT
model contains multitude of features it would be beneficial to
identify the group of causal features that affect the river flow
for better interpretation.

In this paper we propose a novel framework, named Causal-
ity Aware Physical Systems (CAPS)', to overcome the afore-
mentioned problems. To deal with the conflicting nature of
features, CAPS first slices the observational data into daily
slices making it feasible to utilize traditional causal discovery
models to infer the causal relations. CAPS relies on the
assumption that each day can be considered as an indepen-
dent unit and no inter-day causal edges exist in the daily
causal graphs. Next, CAPS infers causal relationships from

Thttps://github.com/paras2612/CAPS
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the daily slices and infers a daily causal graph. To enhance
the interpretability of the features, CAPS utilizes community
detection strategy to group similar causal features together.
Finally, after inferring the causal communities for each day,
CAPS identifies the stable relationships across time. These
stable relations are then considered as causal features. This is
supported by various studies that suggest, causal relationships
are usually stable [14], [15]. Our main contributions are as
follows:

« We study a novel problem setting of learning causal relations
when a major subset of features are constant across time,
while another subset of features is constant across the HRUs
within a sub-basin;

« We propose a novel framework for causality aware feature
selection for the SWAT model for better prediction and
interpretation; and

« We demonstrate the effectiveness of the proposed framework
with comparative analysis and real world case study for
SWAT models. More specifically, based on the arguments
that (a) causal features are generally more interpretable than
other features [16] and that (b) they maybe lead to better
prediction performance [17], [18], we hypothesize that if the
features learned by CAPS can be demonstrated to be more
interpretable compared to features learned by other methods
and if the resulting prediction accuracy is better than the
traditional feature selection techniques, then we conclude
that CAPS is able to identify causally important variables
w.I.t a given target variable; in this case the river flow.

II. METHODS

For physical process-based hydrological models, the iden-
tification of streamflow alteration drivers is done via numeric
experiment where model fitness to data is evaluated with
different ensembles of input data, model structure, and hy-
perparameter settings [19]. The authors in [20] revealed how
river water content in lake is controlled by catchment size and
climate forcing variation via perturbation of basin sizes and
layouts. The driving force of drainage density on land-river
water and carbon dynamics was addressed in [21].
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From data-driven approaches, such drivers can be selected
via various Feature Selection (FS) methods. The common three
categories of FS are-filter, wrapper, and embedding meth-
ods [22] have been widely applied in machine learning hydro-
logical models [23], [24]. Filter methods such as Information
Gain, Correlation, serve as the pre-process for selecting fea-
tures and are independent of predictor choice. Recent example
studies are testing effectiveness of eight filter-based methods in
boosting forecasting performance on monthly streamflow [25],
satisfying relative humidity predictability via combination
of extreme gradient boost (XGBoost) and machine learning
predictors. Wrapper methods evaluate variables based on their
contribution to predictor power and treat the learning model as
pure black box, such as Recursive Feature Elimination (RFE)
used to improve daily streamflow prediction [26]. Embedded
methods integrate features selection in the training process and
is optimized together with the learning process, such as Lasso
Regularization, Random Forest Importance (RFI) are used for
groundwater quality prediction [24].

Since for physical processes it is crucial to understand why
the river flow behaves as it does and what are the critical
features on which experts should focus on, when analyzing
the river flow, its been discovered that the non-causal feature
selection methods may not yield the best results [27], [28].
One possible solution to this problem is to leverage causal
discovery algorithms that aim at discovering the causal rela-
tionships from observational data under certain assumptions.

Causal discovery methods are categorized as constraint
based [29], [30] and score based [31]. A series of work
have focused on leveraging causal discovery algorithms for
feature selection in machine learning models [32], [33]. For
instance, the authors in [34] aimed to learn a candidate Markov
blanket (CMB [9]) with causal information. Then, utilized
neighborhood conditional mutual information to delete the
false positives in CMB. However, this method was designed
for online streaming data rendering it inapplicable for our
dataset. Because, the online streaming data possesses fea-
tures that vary across the stream, whereas in our case some
features vary across time (soil features) and some features
vary across HRUs but are constant across time (temperature).
Another interesting work is a survey of causality-based feature
selection methods [9]. However, we hypotheisze that, these
methods may not yield the CMB in our setting due to the
conflicting nature of features in our dataset. For instance, the
SLL algorithm [32] is a score-based variant of the divide-
and-conquer Markov Boundary learning algorithms. In the
causal structure learning phase, SLL employs a Bayesian
Network structure learning algorithm. Then SLL implements
the symmetric check using the AND and OR rules.

III. PRELIMINARIES

A. Causal Discovery

Discovering and utilizing causal relations is a vital effort
in numerous branches of science [31], [35], [36]. Generally,
Directed Acyclic Graphs (DAGs) are used to represent the
causal relations present in a system.
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Let X = Xy,..., X, refer to a set of p random variables
(features). In a causal DAG, nodes represent random variables,
and edges represent causal links. For instance, if X; — X;
exists in a DAG, it implies that X; is a cause of Xj;. Since
recovering the true causal structure along with edge directions
is not always possible from observational data alone [37],
causal discovery methods are accompanied by certain common
assumptions: Let G = (X, F) represent the DAG containing
X nodes and E edges, and P be the joint probability distri-
bution of X.

Assumption 1 (Causal Markov Condition [33]): The Causal
Markov Condition holds true iff given the set of all its parents,
a node in G is independent of all its non-descendants.

Assumption 2 (Faithfulness [33]): There is no conditional
independence between G and P unless entailed by the Causal
Markov Condition.

Assumption 3 (Causal Sufficiency [33]): All the information
to learn the causal graph is present in the dataset. In other
words, there are no unmeasured common causes (confounders)
between the different features.

B. Hydrological Systems

The SWAT model (SWAT2012 rev. 681) in this work
describes the Trinity River Basin in eastern Texas. The model
consists of 107 sub-basins and 39,104 HRUs (including 14,168
agricultural HRUs) with a total area of 40380 km? (Figure
1(a,b,c)) and 15 reservoirs [38]. Contrary to the typical SWAT
method that removes the minor HRU classes based on the
overall percentage area threshold, agricultural area (not urban)
HRUs are defined by parcel boundaries (except urban areas)
to investigate cropland management schemes on the field level
in this work. We generated the HRUs by integrating over land
parcel data (TNRIS [39]) and land use data (CDL [40]). We
determine the agricultural plant species summarized from the
land use data from 2009 to 2013, with one or two-year’s
cycle for crop rotations. The type with the most significant
area then defines the soil [41] in each HRU. The land slope
of each HRU is calculated from the DEM [42]. The urban
areas were not the focus of the study and therefore the urban
HRUs were generated primarily for computation efficiency so
spatially disconnected grid cells could be aggregated into the
same HRU as long as they have the same land use and soil
type.

Both the model transient input and output are in daily steps.
Model flow calibrations were performed near the outlet of
the Trinity River from 2002 to 2003%. The simulated model
achieved streamflow calibration statistics of R%= 0.76, Nash
Sutcliffe efficiency (NSE)= 0.76, and percent bias (PBAIS) = -
0.44 compared to observations (sub-basin 99, Figure 1(b)). The
model validation is performed in the middle part of the Trinity
river basin (sub-basin 85, Figurel(b)) to demonstrate that
the calibrated model feature values are valid throughout the
different parts of the watershed. The validation point has R?=
0.74, NSE= 0.67, and PBAIS= 11.44 compared to the daily

Zhttps://waterdata.usgs.gov/usa/nwis/uv 208066500



Source Data Feature Type Notation SWAT Feature Name Description Symbol
X1 - Xy Depth......ccoovue mm.1,2,3, DEP_IMP Soil depth parameters 1-4 SDEP1-4
Soil-related X5 - X7 Bulk.Density.Moist..g.cc.1,2,3 Soil density parameters 1-3 SDEN1-3
Soil data features Xg - X11 Ave..AW.Incl..Rock.Frag1,2,3,Crack.volume.potential.of .soil Soil particle size parameters 1-4 SPS1-4
; X120 - X14 Ksat...est......... mm.hr.1,2,3 Soil hydraulic parameters 1-3 SHI-3
Xi5 - X17 | CF, CFH, CFDEC Soil-water interaction parameters 1-3 SWII-3
Calibrated Groundwater- X158 - Xoo | GW_DELAY, GWQMN, GW_REVAP, REVAPMN, RCHRG_DP | Groundwater vertical flow parameters 1-5 GWVI-5
related features Xo23 - Xo5 | ALPHA_BF, GW_SPYLD, ALPHA_BF_D Groundwater horizontal flow parameters 1-3 | GWHI-3
DEM / slope i;‘;fi;‘e‘;“'re'med Xag - Xog | HRU_FR, DIS_STREAM, AREAkm2 HRU’s size and distance to the stream LRF1-3
Terrain-related Xog - X31 | SLSUBBSN, SLSOIL, HRU_SLP Slope parameters 1-3 TSLPI1-3
Land use features X32 - X36 | OV_N, LAT_TTIME, CANMX, SURLAG, R2DJ Land surface shape parameters 1-5 TLSS1-5
(partially) ; X37 - X39 | ESCO, EPCO, CN2 Land surface water loss parameters 1-3 TLSW1-3
Climate Transient X40 Precipitation Daily precipitation (mm) PCP
data features X1 Temperature Average daily temperature (\textcelsius) TMP
Model output X2 WYLD(mm) Water yield (generated) from HRU WYLD

TABLE I: The notations of the SWAT features.

streamflow rate observations. All the HRUs in sub-basin 68
are selected as the experiment object in this work. The reason
to select this sub-basin is that it is an agricultural-dominated
region with a good variation of soil types. Besides, the sub-
basin is one of the headwater sub-basins of the Trinity River,
and the streamflow in this basin is sourced internally from the
HRUs without interactions with other sub-basins. In this sub-
basin, there are 1,002 types of soil, 1 class of slope, and 10
types of land use resulted in 2,715 HRUs. In comparison, the
entire basin contains 15,394 types of soil, 1 class of slope,
and 20 types of land uses yielding 39,104 number of HRUs.
No HRUs from other sub-basins are selected in this study
because a single sub-basin is sufficient to represent both spatial
and transient variations: as the transient data is differentiated
among the different days. However, future work may include
the HRUs multiple sub-basins.

Most of the water quantity input and output calculations
in the SWAT model are within the HRUs. Except for with
reservoirs which have big impact on flow. The alteration
of water output from the HRUs will affect the streamflow
simulation results. In a reverse way, any feature that is not
impacting the water quantity output in the HRUs will also
not affect the simulation results (Figure 1(d)). The previously-
mentioned data inputs convert into HRU-level features in
the SWAT model include soil, groundwater, location, terrain-
related, and transient features show in I. Among the features,
the groundwater-related features and parts of the terrain-related
features are mostly determined by assumptions and model
calibrations. In comparison, the value of soil-related features
are derived from high precision data, with over 10,000 of
feature combinations, and is static over time. We target to
identify the soil-related features which could potentially be
simplified without altering the river streamflow simulation
result as the demonstration of the method in this work. The
result will help identify the soil classifications that differed
only from those of non-water-yield-causal soil-related features.
These soil classifications will be merged in future works to
reduce the computation load on the SWAT model for water
quantity simulations without losing accuracy.

There are in-total 42 features on the HRU-level (X, ¢).
Here, i represents the features (: = 1,2,...,42), h represents
the HRU (h = 1,2,...,2715), and ¢ represents the time step
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(day, t = 1,2,...,730). Among the 42 features, there are
17 soil-water-related features (X1_175,), 2 transient features
(X40—41,n,), the water yield representing the model output
on the HRU-level (X425 ¢), and 20 other features related to
groundwater, location, and terrain shape (Xig_s9, ) (Table
I). Except for the two transient features (X40—41,5,.) and the
water yield (X42  ¢) which may change over different time
steps and across different HRUs, all the other features always
have the same value regardless of time (i.e., X1_394.¢
Xi_39.n,t+1). We focus on the typical causal relationship
between the individual (X; — Xaope,t = 1,2,..,17)
or grouped (X[i1i2.43,..Jh¢t — Xazne [il,i2,i3,...] €
1,2, ...,17) soil-related features and the water yield throughout
all the HRUs (h) in 730 time-steps (t) (all the days in 2002-03).

IV. PROPOSED METHOD

In this work we aim to leverage causal discovery methods to
improve feature selection in the SWAT model. As mentioned
earlier, the SWAT model consists of multiple HRUs, which in
turn contain multitude of features. The observed features vary
across two domains, namely, the HRUs and time. Features
such as temperature and precipitation rate vary across time
but remain constant across the HRUs within a sub-basin,
whereas features such as soil type vary across HRUs but
are constant across time. Due to this conflicting nature of
the features it is difficult to apply any form of temporal or
traditional causal discovery models on the whole dataset. To
overcome this problem we propose a novel framework called
CAPS that works in three steps. First, it utilizes traditional
causal discovery on daily data to capture the daily causal
relationships. Second, it performs community detection to
identify and capture stable relations. Finally, it identifies the
important features and uses them to perform the prediction
task. An overview of our proposed framework can be seen in
Figure 2.

A. Causal Discovery for Feature Selection

Our fundamental step is to discover the causal relations
underneath the observed data such that the features either vary
across the HRUs or across time or a combination of both. This
section shows how to construct the causal graph from the data.
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identifies the stable causal relations with respect to the target variable and use them to perform the prediction task.

We first proceed with splitting the observed data X into
daily segments, such that given a set of features X = {X, 51}
where t represents the time-steps, h represents the HRUs and
1 represents features. Each slice contains the observed features
across all the HRUs for each day — since all the features in
a given slice share the same timestamp, we drop the index
t and use the short hand X;; to refer to features when
it is clear from the context that they are in the same time
slice. After obtaining this daily slice we build on the state-of-
the-art PC algorithm [12] to identify the causal relationships
present in the observational data and learn causal graphs for
each day. The PC algorithm functions in two steps. First, it
learns a skeleton graph from the observed data that consists of
undirected edges only. Next, it orients the undirected edges to
form an equivalence class of Directed Acyclic Graphs. The PC
algorithm utilizes the principle of d-seperation [43] to identify
the causal variables. d-separation is a criterion for deciding,
from a given causal graph, whether a set X; ; of variables is
independent of another set X 5, given a third set Xy, 5,

Definition 1: In a Directed Acyclic Graph (DAG) G, vertex
sets X; , and X are said to be d-connected relative to a
set of vertices X}, 5, such that X;, X; ¢ X, if (i) there exists
a collider free path between X;; and X; that traverses no
member of Xy ;; and (ii) if a collider X, is a member of
X}, or has a descendant in X7, 5, then X, no longer blocks
any path between X; 5 and X .

Xi,p and X, are d-separated by X}, ; in G if and only if

they are not d-connected by X, 5 in G.
A variable is referred as collider if there exists a v-structure
in the graph, such as X;; — X, < Xj;. In the skele-
ton learning step, the PC algorithm starts with a complete
undirected graph of the observed data, where the features of
the data are represented via nodes. The algorithm conducts
conditional independence tests to decide whether an edge
should be removed or not. The conditional independence tests
are conducted as follows:

e For each X;j and X , the PC algorithm checks if X ;, 1L
Xons
e For each X; ) and X, j, and each third variable X}, ; =
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{Xm,n}, the algorithm checks if X AL X | X} 5; if so,

edge is removed between X; ; and X p,.

o For each X; ;, and Xj 5, and each third and fourth variable
Xikn = {Xmn, Xnnt, the algorithm checks if X, L
L X, | Xk n; if so, removes the edge.

e For each X;; and Xj;, if they are still connected, the
algorithm checks if X;; A X; | Xk, where Xj ), €
X\ {Xin, X;n} if so, edge is removed between X j, and
Xjh-

This is how PC algorithm leverages d-seperation. The con-

ditioning set X 5 starts with the value of d = 0 and is

progressively increased (by one) at each new level until d is
greater than the size of the adjacent sets of the testing vertices.

In each iteration, the neighborhood of all the nodes are updated

dynamically with the removal of each edge.

After obtaining the causal graph G, for every day in
consideration, we proceed with the collection G of per-day
causal graphs to the community detection module to identify
features shared across different days.

B. Community Detection on Causal Features

Since the causal graphs learned from the daily slice of the
SWAT data contains multiple set of features we aim to identify
similar and stable sets of features that are potential causes of
the variable of interest across the whole time span. Causal fea-
tures tend to be more interpretable in nature [16]. To enhance
the interpretability of the causal features, i.e. to ensure whether
causally similar features have similar cause-effect relations,
we apply community detection on each causal graph. After
identifying the communities, we focus on those communities
that contain the nodes that affect the variable of interest. After
identifying these communities we find communities that occur
frequently across the whole time span and the features from the
maximally appearing communities are utilized as the optimal
subset of features causing the output. In this section we explain
how the community detection algorithm is used to identify the
feature communities.

The community detection algorithm we use for this purpose
is [44]. This algorithm is designed to identify the communities
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in a DAG. Since causal graphs are represented as DAGs, this
community detection algorithm serves as the perfect candidate
to identify the causal communities. This algorithm works in
two steps. First, it aims to define antichains. In a DAG, a
natural property of nodes at the same level is that they are not
connected, making them suitable candidates to be clustered in
the same community. These nodes are known as antichains.
Although the nodes act as candidates for being clustered in
a community, they need to be similar in some sense. In the
second step, the algorithm conditions the similarities between
two nodes in an antichain to deduce if they should be clustered
together or not. The algorithm begins by partitioning the DAG
into antichains that have large neighborhood overlaps. The
algorithm encapsulates the antichain and neighborhood sim-
ilarities in a function called Siblinarity S(§), which measures
the quality of a given partition § into antichains, F. It is
defined as,

S(F) = Z Z Z (sim(n, m) — simyy (n,m)) (1)

FEFnEF meF\n

where sim(n,m) is some measure of the similarity of two
nodes n and m. The second term, $im,q(n, m), is the ex-
pected value of similarity of these two nodes in some suitable
null model which is generally some randomised version of the
DAG. As m and n are in the same antichain A there is no path
between nodes contributing to siblinarity. The logical choice
for the similarity measure is the neighborhood overlap between
nodes n and m, sim(n, m) = |N(n) NN (m)| where N (n) is
the neighbourhood of node n. The Eq.(1) can be written as,

S(3) = Z]—‘eg Enef Zmej-‘\n (Anm - 7’“{;7) )
Rn ‘= Zm Anm? W = Zn,m A”m

Here the adjacency matrix A for the DAG is defined so
that A,,, is the weight of the edge from n to m. The
neighbourhood overlap is captured by the matrix A which
is the product of the adjacency matrix A of the DAG and its
transpose. W is the total strength of edges in that graph. If the
value of W is small, and the siblinarity of a given antichain
is large, we can expect that the overlap of neighbourhoods of
nodes in the antichain is sparse.

2)

C. Prediction using Causal Features

We obtain the set of daily causal features from the causal
discovery module, namely Xf“s%! represents the day. We
then utilize a frequency strategy to identify the stable causal re-
lations. We first sort the causal features based on the frequency
with which they appear across all days. Next, we identify the
top k most frequent causal relationships affecting the target
variable directly. The value of k is calculated based on a
thresholding factor, oo . We set o = 0.8 implying the causal
relationships that appear at least 80% of the time are selected
for prediction. After identifying the set of causal features we
assess the predicting capabilities of the target variable, i.e. the
water quantity. Given the data for each day D = {(ypn,X; 1)
where y; is the water quantity response for the hth HRU,
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measured on a continuous scale; and x;; = X,-f‘ﬁ“s“l is the
associated predictor vector. After obtaining the predicted value
yn we compute the error on prediction by utilizing mean
squared error. The overall loss function is,

1
L= (um—in)* (3)

h

where ¥, is the actual value and g, is the predicted value.

V. EXPERIMENTS

We conducted a series of experiments to understand whether
causal discovery can aid in selecting optimal features for un-
derstanding physical processes — more specifically, predicting
water quantity. Ideally, a causal discovery method is evaluated
against a ground truth causal graph [45]. Since the true
causal graph for physical process based hydrological models
is not available we follow the recent advances [10], [17],
[18] and hypothesize that, utilizing only the causal features
in predicting the water quantity will yield a lower error rate
compared to utilizing features identified via different feature
selection techniques. Furthermore, since causal features are
more interpretable than other features [16] we also conduct
a real-world case study to evaluate the interpretability of the
causal features. We answer the following research questions:

« RQ.1 Can causal discovery methods be utilized for feature
selection in physical process-based hydrological models?

« RQ.2 Is CAPS able to cluster related variables together?

¢ RQ.3 Are the features learned by causal discovery based
feature selection method more intuitive and interpretable
compared to other feature selection techniques?

e RQ.4 Which soil-related features do not cause variation in
water yield (WYLD) values?

A. Data Preperation

The SWAT dataset consists of HRU level data measured 730
days. The dataset contains 2,715 HRUs where each HRU is
measured across 42 features. We consider the data for each
day separately to learn daily causal graphs.

B. Experimental Setup

We build on the PC algorithm [12] for performing causal
discovery and antichain algorithm for DAGs [44] for perform-
ing community detection. We implement the causal discovery
module with the help of pcalg package in R programming
language, where we use the Gaussian conditional indepen-
dence testing [46] and we implement the community detection
algorithm using python. We used grid search to find the
optimal number of features to be selected by the wrapper
methods. For the correlation, mutual information and random
forest importance methods, the features were selected based on
a threshold value, i.e. if the score metric is greater than 0 we
selected those features for prediction. For the KNN regressor
we selected the neighbors as 20 and for the SVR we selected
the margin of tolerance () as 0.2 and regularization parameter
C as 1. We chose the Chi-Square test for computing the
statistically significant features as it measures if two variables



are statistically dependent on each other or not. The data is
split w.r.t the days, i.e. since the total dataset consists of 730
days’ worth of measurements, the training is done on 610
days’ data and evaluated on the remaining 120 days.

C. Baselines

Feature selection approaches are usually divided into four
categories: filter methods [47], wrapper methods [48], embed-
ded methods [49], and causal methods [9].

Filter Methods: These methods are generally faster and com-
putationally less expensive than other methods. Examples of
these include Mutual Information [50], and Correlation [51].
The logic behind using correlation is that usually predictive
variables are highly correlated with the target variable.
Wrapper Methods: Wrapper methods leverage the space of
all possible subsets of features for identifying the optimal
feature subset for predicting a target variable. Forward Feature
Selection [52] method starts with the best performing variable
against the target. It iteratively adds other variables that give
best performance in combination with the previous variables.
Backward Feature Selection [53] is the opposite of Forward
Feature Selection. Recursive Feature Elimination [54] method
selects features by recursively considering smaller and smaller
sets of features. First, an estimator is trained on all the features
to receive importance scores and the least important features
are pruned.

Embedded Methods: These methods encompass the ben-
efits of both the wrapper and filter methods, by including
interactions of features. Lasso Regularization [55] relies on
L1 constraint to shrink coefficients of some of features to
zero; features with zero coefficients are removed from the
model. Random Forest Importance [56] is a decision tree-
based stretegy. Nodes with the greatest decrease in impurity
are closer to the root node, while nodes with the least decrease
in impurity occur closer to the leaf nodes. Thus, by pruning
trees below a particular node, it identifies important features.
Causal Methods: These methods leverage causal discovery
algorithms to identify and select features that cause the tar-
get variables. For instance, the the SLL-MB algorithm [32]
is a score-based variant of the divide-and-conquer Markov
Boundary learning algorithms. In the causal structure learning
phase, SLL employs a Bayesian Network structure learning
algorithm. Then SLL implements the symmetric check using
the AND and OR rules.

We implemented all traditional baselines using the sklearn
library, and the causal baseline with the help of pyCausalFS.

D. Evaluation Measures

To evaluate the quality of features selected by different
approaches, we employ several common predictive models
including Linear regression, K-Nearest Neighbor Regressor
(KNN) [57], and Support Vector Regressor (SVR) [58]. The
use of multiple models in the evaluation avoids the possibility
of model biases against specific data sets. To ensure fair
comparison against CAPS, for each baseline, we first identify
the important features for the daily slice of the data. Then,
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we utilize the frequency strategy (also used in CAPS) to
identify the most frequently appearing features across all time
steps and perform prediction on this stable feature subset. The
performances are assessed by the following criteria:

« prediction accuracy measures; and
« proportion of features selected relative to the original num-
ber of features.

For assessing the predictive performances of different models,
we utilize the following evaluation metrics (the lower the
values, the better the performance):

« MAE: mean absolute error; MAE = L 5™ | |y, — 3

« MSE: mean square error; MSE = 13" (y, — yAt)2

o RAE: relative absolute error; RAE = %

E. Performance Comparisons (RQ.1)

We compare the different baseline approaches with CAPS
on the SWAT dataset for three machine learning techniques
— Linear regression, K-Nearest Neighbor (KNN) [57], and
Support vector Regressor (SVR) [58]. Table II demonstrates
prediction performances across three different metrics (MSE,
MAE, and RAE). The table also lists the number of statistically
significant features based on the Chi-Square Test, the features
selected by the different feature selection methods and their
proportion with respect to all the features. From this table, we
can make the following observations with respect to RQ.1:

o CAPS consistently yields the best performance across all
models and all accuracy metrics.

« Since CAPS utilizes causal discovery algorithms (PC in this
case), CAPS selects the maximum number of statistically
significant features compared to the other methods as shown
in Table II. Moreover, the second highest statistical features
are selected by SLL-MB which also utilizes a causal dis-
covery method to select the optimal features.

The reason why CAPS is able to achieve better performance
is that traditional methods such as Correlation Method, selects
features solely based on the correlation score. However, high
correlation might not necessarily reflect causal relation [59],
i.e. the correlation might be due to other unobserved factors.
CAPS on the other hand, utilizes causal discovery methods
that are more advanced than correlation measures because
unlike correlation that implies there is a statistical associa-
tion between variables causation suggests that a change in
one variable causes a change in another variable. Thus, the
features selected by CAPS represent those features that have
a significant impact on the target variable.

In addition to the above key observation, we also make

several lesser observations from the results:

« Among the four categories of baselines, we observe that
SLL-MB from causal methods serve as the strongest
baseline. This is because, similar to CAPS, SLL-MB also
aims at utilizing score based causal discovery methods
for feature selection. However, We believe SLL-MB does
not outperform CAPS because of the conflicting nature
of the features present in the SWAT dataset. Since SWAT
contains features that vary across time but are constant



. .. Filter Methods Wrapper Methods Embedded Methods Causal Methods
Metric Model Original -
Mutual Forward Backward Recursive Lasso Random
Info Corr. Feature Feature Feature Re Forest SLL-MB CAPS (ours)
: Selection Selection Elimination & Importance
Linear Regression 0.8010.07 || 0.9120.05 | 0.83+£0.03 || 0.8940.04 | 0.93£0.04 | 0.8710.03 || 0.9240.06 | 0.88£0.04 || 0.874002 | 0.85:0.01
MSE K'Ne;':gsr‘eiz‘rghh"' 0.92:£0.05 | 0944004 | 0.9140.02 || 0.92:£0.03 | 0.9440.05 | 0.89+£0.02 || 0.90+£0.04 | 0.90+£0.03 || 0.89+0.01 | 0.87+0.02
5“‘;&‘;2:5?“ 0.86:0.05 | 0.880.05 | 0.860.01 || 0.8840.03 | 0.90+£0.06 | 0.85+0.03 || 0.924£0.04 | 0.87+£0.03 | 0.86:0.03 | 0.8420.01
Linear Regression 0.41E0.04 || 0.43£0.03 | 041£0.02 || 0412003 | 0.43£0.05 | 040003 || 0.43£0.04 | 040£0.02 || 0.39£0.02 | 0.38£0.01
MAE K'Ne;?gs:ei‘:fhb“’ 0.2840.04 | 0294003 | 0.26+0.03 || 0284004 | 0.2940.04 | 0274£0.03 || 0.284£0.03 | 026:£0.02 || 0254003 | 0.2440.02
S“%‘:;:g‘g’iﬁ'“ 0.23£0.03 | 0264002 | 02240.02 || 0.24:£0.04 | 025+0.02 | 0.21+£0.02 || 0.23+£0.04 | 0214003 || 0.19+0.02 | 0.19+0.02
Linear Regression 0.8620.06 || 0.9420.04 | 0.88£0.03 || 0.894005 | 0.9550.03 | 0.894002 || 094003 | 0.88+0.02 | 0.8620.01 | 0.8310.01
RAE K'Ne‘l’é‘*;el;z‘fhh"' 0.59:£0.05 | 0.6140.03 | 0.58+0.01 || 0.59£0.03 | 0.61+0.04 | 0.57+£0.03 || 0.60+£0.03 | 0.56:£0.03 || 0.56+0.03 | 0.54+0.02
S“‘l’g;'rzs‘s’i“r“’r 0544004 | 0.5740.03 | 0.554£0.02 || 0544003 | 0.56+£0.03 | 0532002 || 0.5740.04 | 0524002 | 051001 | 0.4940.01
# of Statistically Significant features 22 9 13 10 7 10 9 10 14 20
# of Features Selected 42 20 13 18 20 15 15 15 18 20
Proportion of Features Selected (%) 100 48 31 43 48 36 36 36 43 48

TABLE II: Prediction performances using linear regression, KNR, and SVR with features selected by different methods averaged
across all days (bold font highlights best results). The statistical significant features are computed via the Chi-Square test, which
tests for independence between the features and the target variable.

Latent Communities

Community #1 \

Community #2 | Community #3

’SDEP1,2,3’, "SDENI,1,2,3’, "SH1,2’, ’SPS2,3’ [ ’SH3’, ’SPS1’, *TSLP1,3’, "TLSW3’, °LRF1,3’, "TLSS1’ [

WYLD |

TABLE III: Latent communities identified by the community detection module. The feature symbols are same as Table L.

Selected Features

Percentage of

Method Transient Soil-related Other features shared
Features Features Features ‘ with CAPS
Filter Mutual 'PCP? ’SH1,3’, °SWI1,2,3°, ’SPS2,3’, "TLSW1,2°, "GWHI’, "TSLP2, *TSLP3’, 'GWV1,2’, 45
_crer Info *SPS4’ *TLSS4.5’, "DEP_IMP’, "LRF2’ i
Correlation ’PCP’, "TMP’ ’SDEP1,2’, "SHT’, °SPS1,2,3’, °'SDEN1,2,3’ *TSLP1’, "'TLSW3’ 65
Forward B s R
Wrapper Feature ; *SDEP1,2,3", SDEN1,2,3"/SPS2,3, *SH3", *SPS4’ . 0\55??24 STLS(;’V\;H N 50
election
Methods Backward "GWV4,5’, "GWH2,3’, "LRF1,2" "TSLP1,3’, "TSLP2’
» , 5 25, .3 . 3, s
Feature T™P SWIL2,3 TLSSI’;TLSS2,34°, "TLSW1.2", "DEP_IMP’ 3
Selection
Recursive
Feature ’PCP’ ’SDEPT’, ’SDEN1,3’, *SPS3’, °’SH1,2,3’,SPS4’ *TLSW3’, "LRF1,2°, "'TSLP2’, *TLSS1’TLSS3’ 50
Bl ot
Lasso oo . . . X "TSLPZ’, "TSLP3’, 'LRFI’, "'TLSSI’,
El\l/ll"l‘:)t(;:)(:l(;d ization PCP SPS1,2,3’, ‘SWI1,2’, 'SDEP3 TLSS2, "GWV1.2", "GWHI’ 45
Random
Forest 'TMP’ ’SPS2’, ’SH1,3’, ’SDEN3’, *SDEP1,2,3’, SPS4’} *GWV4,5°, "GWH2,3, *TSLP1,3’ 50
Importance
Causal SLL-MB TMP’, "PCP’ ’SDEP1,2°, °'SDEN3’,SPS1,2,3°, °SH1,2,3’SPS4’ *GWH1,2’, "'TSLP1,3’, "TLSW3’, "'TLSW1’ 70
Methods CAPS (Ours) *TMP’, ’PCP’ | ’SPS1,2,3’, °SH1,2,3’, 'SDEN1,2,3’, 'SDEP1,2,3’, ’SWI1,3’ ’TSLP1,3’, 'TLSST’, "'TLSW3’ 100

TABLE IV: Features selected by different methods. The feature symbols are consistent with the symbols shown in Table I.

Bold symbols represent statistically significant features.

across HRUs and features that vary across HRUs but
are constant w.r.t time, SLL-MB ignores certain features
while learning the causal structure.

Among the traditional baselines, random forest importance
outperforms the other methods, likely due to its capabilities
of capturing non-linear relations among variables [60]. While
causal and conventional baselines have a close margin in
terms of their prediction performances, when we compare the
statistically significant features picked by the causal techniques
with the traditional methods, we are able to observe a major
difference: Because causal approaches rely on conditional
independence testing during the feature selection phase, they
are select features on which the target variable depends.

« Among the three different models we observe that Sup-
port Vector Regressor outperforms K-Nearest Neighbor
Regressor and Linear Regression Models.

SVR’s superior performance can be attributed to the following
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qualities: (1) SVR uses kernel trick to solve complex solutions
and capture both linear and non-linear solutions. (2) SVR
is better equipped to deal with outliers with the aid of the
soft margin constant, and (3) SVR uses a convex optimization
function, allowing global minima to be achievable.

F. Quality of Variable Clusters — a Case Study (RQ.2)

The causal discovery module identifies daily causal relations
and encapsulates these relations in a graphical representation,
rendering a collection of causal graphs G {Gy : t =
{1,...,730}. The community detection module, then, helps
group related features together. As discussed in Section I'V-B,
variables having similar causal neighborhoods are assigned
into the same community. Table III presents the communities.

To assess whether the learned communities are able to group
causally similar features together, we relied on the expertise
of domain experts. The feedback we received was as follows:
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o Latent Community #1 is intuitive in that it groups soil-
related features together.

o Community #3 is also intuitive in that it consists only of
the SWAT output variable “water yield” CWYLD’), which
is caused by other variables, but does not cause any others.

o Almost all features except "SH3” and "SPS1’ (which are soil
related) in Community #2 are terrain or location related.

Overall, the variable groups identified by CAPS are physically
meaningful. The existence of two soil related features SH3’
and SPS1’ in Community #2, among land-use related vari-
ables, indicate either a non-trivial causal relationship between
the land variables and these two soil variables or SWAT data
may contain hidden confounders between soil-related and the
land-related features. If the latter is true, this can be alleviated
by incorporating causal discovery models such as [30], that
account for the presence of the unobserved confounders. We
leave this for future investigation.

G. Causal Interpretability — a Case Study (RQ.3 and RQ.4)

Causal features should be more interpretable and intuitive
when compared to non-causal features, as causal processes
reflect how humans perceive the data [61]. Thus, to verify
whether CAPS is able to select intuitive and interpretable
features, within the context of predicting water quantity we
conduct a case study utilizing the domain knowledge of human
experts, i.e. a team of three hydrologists.

As mentioned earlier, the SWAT model consists of three
types of features: transient features (precipitation, temperature,
and the model output WYLD), soil-related features (such
as soil depth, soil moist levels, and rock fragment levels),
and other features (including groundwater-related, location-
related and terrain-related features in Tablel). For this study,
we first divided the set of features identified by each feature
selection algorithm to these three categories. The set of fea-
tures selected by each method and the shared features across
each method and CAPS are shown in Table IV. We then
prepared a data frame consisting of two columns, Method
and FeaturesSelected. The Method column contained an
integer identifiers that map to the method names. The un-
derlying mapping was not exposed to the hydrologists. The
FeaturesSelected column contained the set of features se-
lected by each method under each of the three categories.
This dataframe was then shared with the hydrologists, who
were tasked to identifying which sets of features were more
crucial for predicting the water quantity.

In this blind test, all three members of the hydrologist team
identified the features included in CAPS method as the best set
of features for predicting water quantity output on the HRU
level. Here is the summary explaining their choice:

o First, both the 'PCP’ and "TMP’ are essential features for
hydrology processes: as the precipitation is the only water
source to the HRUs and the temperature controls the water
evaporation process. Any methods without the inclusion of
these transient data misses important water balance element.

« Second, methods consisting of features describing land sur-
face conditions including the curve number ("T'LSW 3'), the
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Manning’s roughness coefficient ('T'LSS1’), and the slope
length and steepness conditions ("I'SLP1’ and 'T'SLP3’)
are more meaningful and interpretable. Because these fea-
tures have a more direct and significant influence on
water quantities compared to the groundwater transport
(GWV1-5 and 'GW H1—3) and evaporation and plant-
uptake processes (T LSW1 — 2/, and 'TLSS3).

o Third, the features with zero variations among different
HRUs and days are out of the causal model’s ability
and thus should not exist in the result. These features
include: 'GWV1,2,4, 'GWH3, 'LRF2, 'TLS52,4,5,
'"TSLP2,'TLSW?2','SDEP4, and' SWI1 —2'.

This confirms CAPS ability to select meaningful sets of
features and further explains the higher prediction accuracies
reported in Table II. Furthermore, we observed that among
the traditional baselines Correlation method performed the
best in terms of interpretable features. This can be attributed
to the fact that the correlation method captures the linear
association between the features and the target. However, since
this method fails to capture the non-linear associations, it fails
to capture all the interpretable features which are essential
for predicting the river flow as per the domain experts. Also,
the high overlap between SLL-MB and CAPS suggests that
causal methods are able to select more interpretable features
when compared to traditional methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a causal feature selection
method, named Causality-Aware Physical Systems (CAPS) for
physical process-based hydrological systems such as SWAT.
The SWAT model consists of 17 soil-related features. To
reduce the complexity of the SWAT model, CAPS eliminates
features by identifying causally unimportant soil-related fea-
tures that do not influence the water yield (WYLD). To high-
light the efficacy of CAPS we conducted multiple experiments
evaluating the predictive capabilities and the interpretability of
features. We also conducted a case study to highlight that the
features selected by CAPS are mostly aligned with the features
selected by the human experts. Such results suggest that any
soil types which do not differ across the 12 causal features
selected by CAPS, may be merged into a single soil type.

A possible direction to extend this work would be to develop
a component that could account for confounders. Another
direction can be to capture the inter-day causal relationships
among the features and identify whether features on the current
day have any causal impact on the features the next day.
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