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Watershed Modeling
Efforts in the City of

he City of Austin Watershed Protection Department (WPD) is charged with protecting
he lives and property of City of Austin residents from flooding, erosion, and water
pollution. To that end, WPD has developed watershed models to answer a variety of
questions related to erosion and water pollution. The impetus for these models was the
Stream Functional Pyramid developed by Harman et al (2012), which linked hydrology

ith geomorphology, chemistry, and biology. WPD then adapted this framework to
nclude the human/social component in watershed science. With this framework, they
are able to examine how these components interact with each other using four

odeling techniques: sociological modeling, superforecasting, physics-based watershed

odels, and deep learning algorithms. Mr. Porras will discuss sociological modeling and
superforecasting briefly, but focus this presentation on physics-based modeling and
deep learning algorithms. Using these models at a fine scale, WPD is able to identify
problems and propose solutions.
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How can we know what's going on in our watersheds?

Physicochemical: Response/Driver . Su pe rforecastin g
(Nutrients, Temperature, E. coli, Contaminants, etc.) . . )
. Sociological modeling
Physics-based modeling

. Deep learning

Geology Climate




Superforecasting
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The Art and Science
of Prediction

PHILIP E. TETLOCK
DAN GARDNER

“The most important book on decision making since Daniel Kahneman’s

Thinking, Fast and Slow.” JA S ON ZWEI [1 The Wall Street Journal

How to know something with
sparse data

Will (hopefully) answer questions related to nature-based
policies, projects, programs, and practices. For example:

How effective are education outreach programs in
mitigating over-fertilization?

How do the life cycle costs compare between concrete
channels and natural riparian areas?

How effective are biofiltration ponds at removing
nutrients from the system?




Our Plan for Superforecasting

SEND OUTREACH TO WATERSHED PROTECTION
DEPT.

. HAVE INTERESTED PERSONS TAKE AN ASSESSMENT

BASED ON THAT ASSESSMENT AND OTHER
CRITERIA, SELECT TOP 10-15 PEOPLE

. TRAIN THE SELECTED GROUP

. START SUPERFORECASTING!




Sociological modeling
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Sociological modeling — measuring latent
variables
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Figure 7. Bamberg and Moser (2007) Meta-Analysis Model of Pro-Environmental Behavior




Sociological modeling — for raincatching
actions
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Sociological modeling — raincatching
a Ct i O n S Table 3 Regression parameters for Rain Collection Behaviors

Term estimate z p
awareness ~ soc.capital -0.9234 -2.489 0.01282
attitude ~ soc.capital 0.3727 2.328 0.01989
SOCial persnorm ~ soc.capital -0.2951 -1.015 0.3099

. persnorm ~ awareness 0.5378 9.974 0

Ca pltal persnorm ~ attitude 2.636 2.843 0.004472
raincollection_behave ~ -0.4964 -5.168 2.364e-07
awareness
raincollection_behave ~ -0.1375 -1.088 0.2767
persnorm
raincollection_behave ~ 4707 2.787 0.005315
attitude

Problem
Awareness

Personal
Norms

Raincatching
Actions




Sociological modeling — measuring latent

Social
Capital

Problem
Awareness

Raincatchind
Actions
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Table 7: Regression Results for Combined Sample

Dependent variable:

Total Actions

Structural Actions

Raincatching
Actions

Non-structural
Actions

(m

(2)

(3)

4

Non-white

-0.83™" (0.25)

-0.61"(0.17)

-0.11 (0.09)

-0.22 (0.16)

No Adv Degree

-0.14(0.22)

-0.26" (0.15)

-0.08 (0.08)

0.1 (0.14)

Median Income

0.01 (0.32)

0.24(0.22)

0.08 (0.11)

-0.24 (0.20)

Low Income

-0.39(0.37)

-0.18(0.25)

-0.02 (0.13)

-0.21(0.23)

Very Low Income

0.29 (0.38)

0.16 (0.26)

0.12(0.13)

0.13 (0.24)

Personal Norms

1.07** (0.19)

0.57* (0.13)

0.21 (0.07)

0.51"* {0.12)

Attitude

0.05 (0.08)

0.02 (0.05)

0.04 (0.03)

0.03 (0.05)

Awareness

0.18 (0.23)

0.04 (0.15)

-0.05 (0.08)

0.14(0.14)

Social Capital

0.38™ (0.17)

0.277(0.12)

0.05 (0.08)

0.11 (0.11)

Constant

.33 (0.19)

1,88 (0.13)

0.40™ (0.07)

4,45 (0.12)

Observations

[ 301

| 301

[ 301

[ 301

Mote: ‘pﬂrl'l: am ‘p#ll:'_-;

~p<0.01




Results from sociological modeling raincatching

actions
wﬁ LR

2.
M

Travis Enriched Census Districts
RAINCATCHINGACTIONS
0.582185 - 0.597505
0.568945 - 0.582184
0.553898 - 0.5468944
0.538976 - 0.553897

0.517411 - 0.538975




Physics-based modeling

GRIDDED SURFACE SUBSURFACE
HYDROLOGIC ANALYSIS TOOL
(GSSHA)




Urban Watershed Pyramid

Physicochemical: Response/Driver
(Nutrients, Temperature, E. coli, Contaminants, etc.)

Geology Climate




WMS — Land use




WMS - soil type




Hydrograph result
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Study area




Study area-discretized




Urban Watershed Pyramid

Physicochemical: Response/Driver
(Nutrients, Temperature, E. coli, Contaminants, etc.)

Geology Climate




Deep learning algorithms
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Using Deep Learning with Hydrology
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Using Deep Learning with Hydrology

TARGET INPUTS
A |Watershed EllSite Year AvePTI 1-Jan 2-Jan
SHL 2011 4.286 -6.212 -6.636
SHL 2011 4.631 -5.618 -5.976
SHL 2011 4.878 -5.603 -5.961
SHL 2013 4.777 -6.637 -6.637
SHL 2013 4.237 -7.327 -7.328
SHL 2013 4.691 -6.783 -6.889
SHL 2013 4.973 -6.734 -6.848
SHL 2015 4.848 -6.624 -6.635
SHL 2015 4.467 -5.316 -5.483
SHL 2015 4.734 -4.613 -4.779
SHL 2015 4.886 -4.624 -4.79
SHL 2017 5.058 -6.637 -6.637

Training

2
B
4
5
6
7
8
9
10
11
12
13

140 BLU 2017 4.809 -4.061 -2.744
141/ CCE 2013 4.543 -3.869 -3.98
142 | CCE 2015 4.721 -2.767 -3.091
143 |CCE 2017 4.494 -3.857 -2.83
144 ccw 2011 4.778 -5.455 -4.73
145 ccw 2011 4.652 -4.804 -4.622
146/ CcCw 2013 5.026 -5.453 -5.456
147 CcCcw 2013 4.558 -5.439 -5.442
148 cCcw 2015 4.804 -4.274 -4.279
149/ ccw 2015 4.745 -3.995 -4.026
150 ccw 2017 4.633 -4.419 -4.516
151/ CcCcw 2017 4.383 -4.148 -4.218
152

153

A I b~
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Evaluating Deep Learning
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Predicting Benthic Macroinvertebrates Metrics

1.

We can estimate the anthropogenic
impact from land surfaces using literature
values, Superforecasting, and sociological
modeling

We can use GIS data and climate data to
estimate hydrographs all around Austin
using physics-based models

Then we can use the outputs of the
physics-based models with empirical data
collected on ecological community
metrics to train a DL model

Finally, we can make predictions of the
ecological community metrics using the
trained DL model

We can use this framework to include
other environmental data, such as




Meet the team
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QU‘é'stlons?

Abel Porras

512-468-7095
Abel.Porras@austintexas.gov
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