The N-EWN Knowledge Series A Continuing Education Series about Engineering with Nature

Christopher Haring, PhD, PG, CFM Research Physical Scientist USACE Engineer Research and Development Center River Engineering Branch – Coastal Hydraulics Laboratory

Natural and Nature-Based Features (NNBF) for Inland Fluvial Restoration

Engineering With Nature (EWN®) and Natural and Nature-Based Features (NNBF) is a principal component to the U.S. Army Corps of Engineers (USACE) inland fluvial watershed, Flood Risk Management (FRM), Regional Sediment Management (RSM), and Ecosystem Restoration portfolio of programs. In a memo dated April 2024, the USACE Headquarters required all future USACE water resource projects to investigate and incorporate NNBF approaches. This includes applying NNBF approaches to studies, alternative analysis, design, construction, operation and maintenance, and adaptive management. This presentation will provide information and newly developed guidance addressing watershed studies, FRM, RSM, and ecosystem restoration projects.

Save the date! Upcoming webinars will take place the 3rd Thursday of the month.

Innovative solutions for a safer, better world

BUILDING STRONG_®

US Army Corps

of Engineers

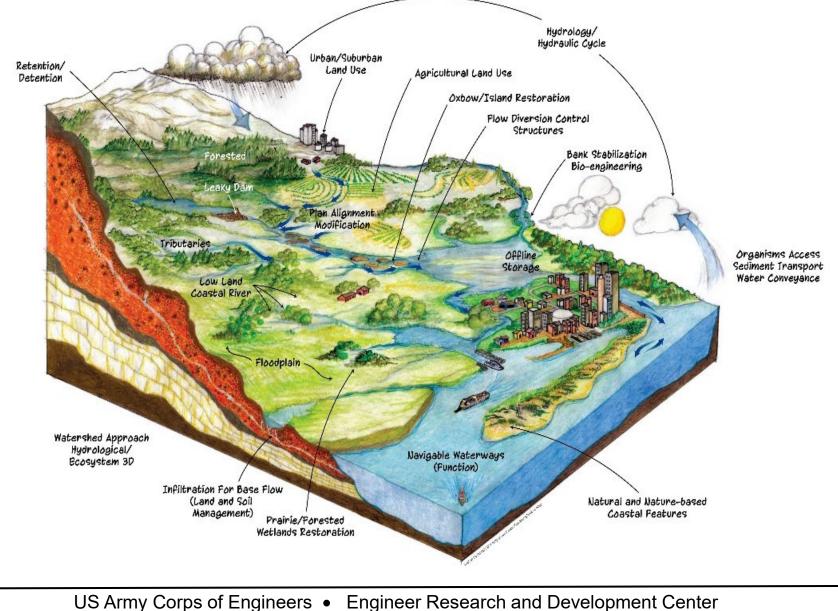
N-EWN Knowledge Series:

Natural and Nature Based Features (NNBF) for Inland Fluvial Restoration

N-EWN & ENGINEERING WITH NATURE® (EWN)

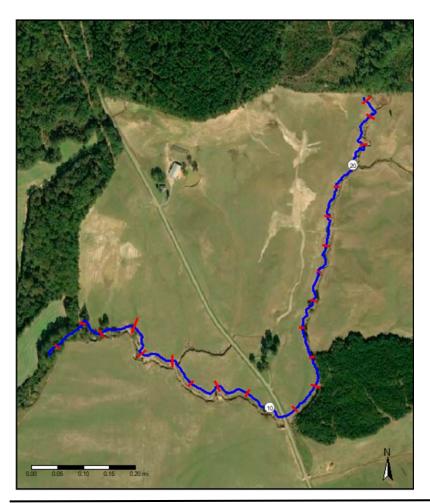
NNBF-STREAMBANK MANUAL PROJECT FLOOD & COASTAL SYSTEMS PROGRAM

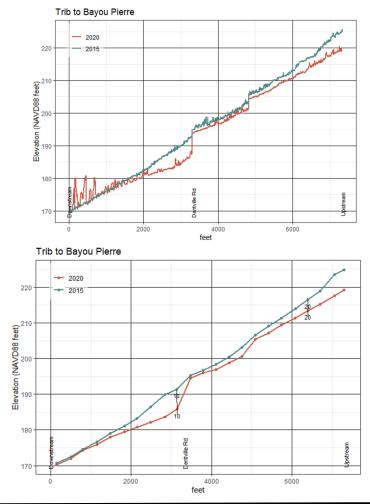
TAINTER GATE



Chris Haring, PhD, P.G., CFM

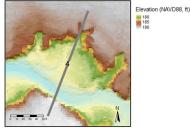
Engineering Research & Development Center (ERDC)

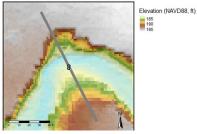

US Army Corps of Engineers

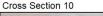

NNBF: A SYSTEMS VIEW OF SOLUTIONS

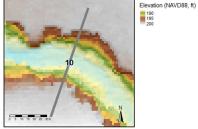
SYSTEMS APPROACH TO WATERSHED ASSESSMENTS AND NNBF APPLICATIONS

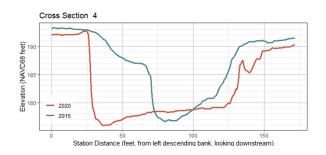
FluvialGeomorph (FG) Profile and cross-sections: Bayou Pierre Tributary, west-central MS

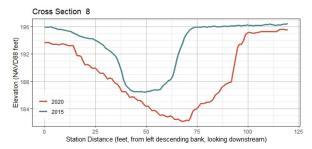


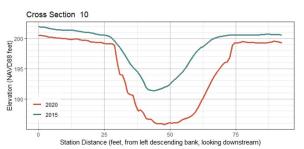

US Army Corps of Engineers • Engineer Research and Development Center

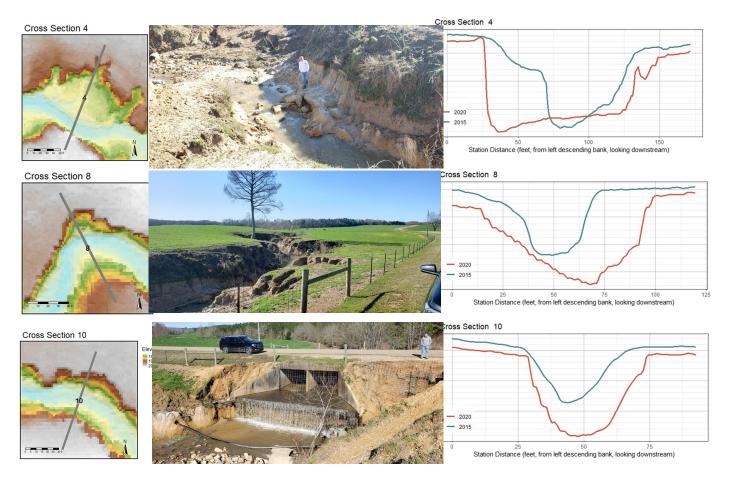

Profile and cross-sections: Bayou Pierre Tributary, west-central MS

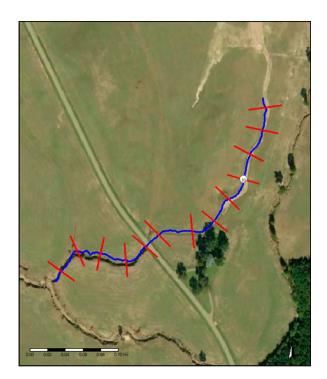

Cross Section 4

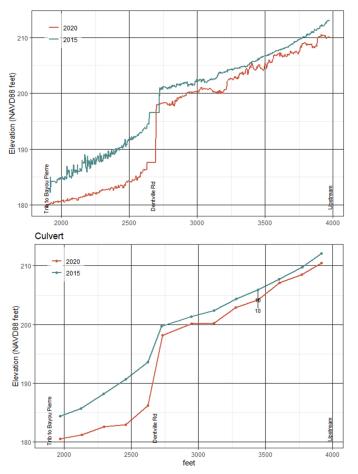



Cross Section 8



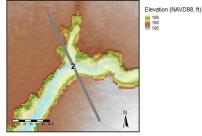


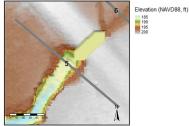

US Army Corps of Engineers • Engineer Research and Development Center

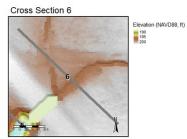

Profile and cross-sections: Bayou Pierre Tributary, west-central MS

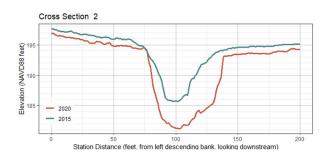
US Army Corps of Engineers • Engineer Research and Development Center

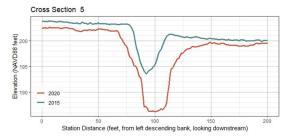
Profile and cross-sections: Bayou Pierre Tributary, west-central MS

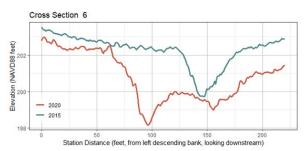


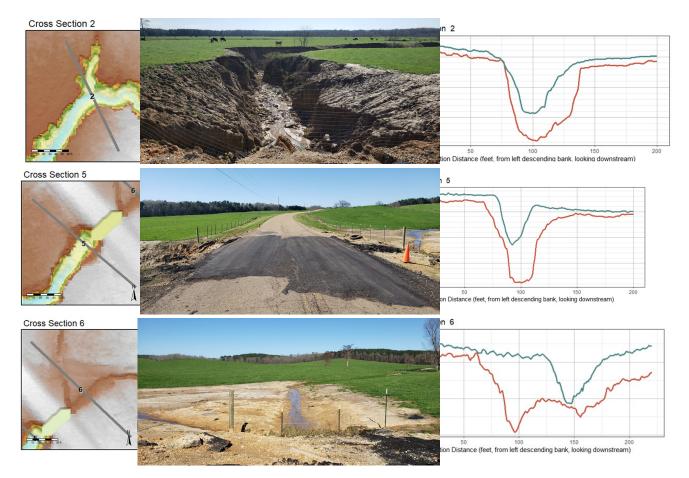

US Army Corps of Engineers • Engineer Research and Development Center


Profile and cross-sections: Bayou Pierre Tributary, west-central MS

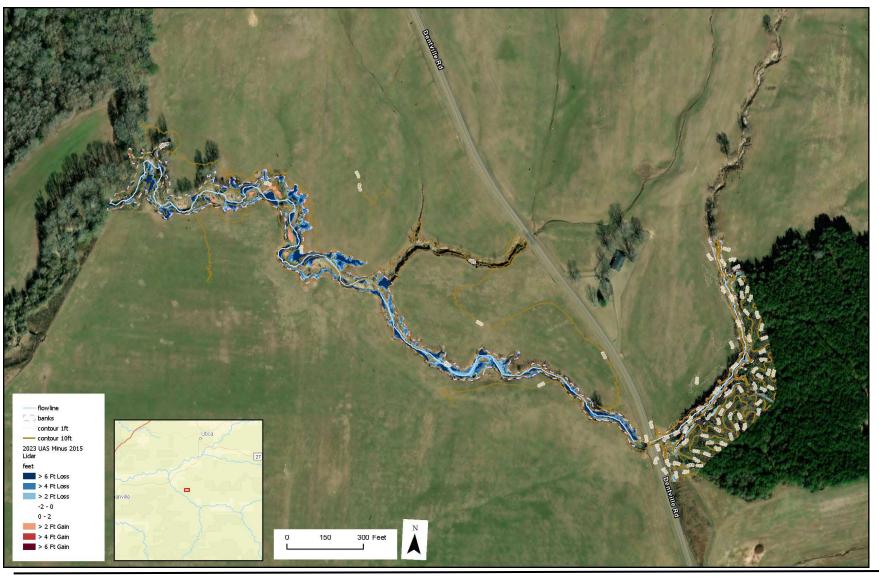

Cross Section 2




Cross Section 5



US Army Corps of Engineers • Engineer Research and Development Center


Profile and cross-sections: Bayou Pierre Tributary, west-central MS

US Army Corps of Engineers • Engineer Research and Development Center

FG APPLICATIONS CHANGE DETECTION

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

Functional Assessment

Stream functions described by Fischenich (2006)

System Dynamics

Maintain stream evolution processes Energy management processes Provide for riparian succession

Geomorphology

Sediment continuity Maintain substrates and structural processes Quality and quantity of sediments

Biology

Support biological communiites and processes Provide necessary aquatic and riparian habitats Maintain trophic structure and processes

Hydrology

Surface water storage processes Maintain surface/subsurface connections and processes General hydrodynamic balance

Physiochemical

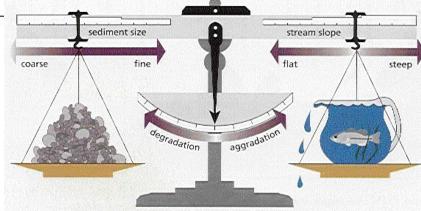
Clima

Maintain water and soil quality Maintain chemical processes and nutrient cycles Maintain landscape pathways

LANES BALANCE

Stream functions pyramid from Harman et al. (2012)

5 BIOLOGY -Biodiversity and the life histories of equatic and rigarian life


PHYSICOCHEMICAL * Temperature and oxygen regulation;processing of organic matter and nutrient

GEOMORPHOLOGY -Transport of wood and sediment to create diverse load forms and dynamic equilibries

HYDRAULIC --Transport of water in the channel, on the Boodplaan, and through sediments

mprocessor = anoport of water from the watershed to the channel

Geology

Qs • D50 00 Qw • S

NNBF ENGINEERING PERFORMANCE

Levee Setbacks

Benefits/Processes

-decreased flood levels and velocities -reduced frequency of maintenance and repair on levee -reduced navigational maintenance -reduction in erosion/scour and O&M costs -increased recreational, cultural, and educational opportunities

Performance Factors

-amount of new floodplain affects hydrologic loading

-alignment options for improved hazard mitigation

-ecological goals of project with increased floodplain connection

-collaboration with stakeholders and other Federal agencies

Naturalization of Channel Design

Benefits/Processes

-reduced frequency of maintenance on levee and restoration projects
-naturalization of flow regimes and floodplain reconnection
-ecological benefits to floodplain habitat
-reduction in erosion/scour and O&M costs
-increased recreational, cultural, and educational opportunities

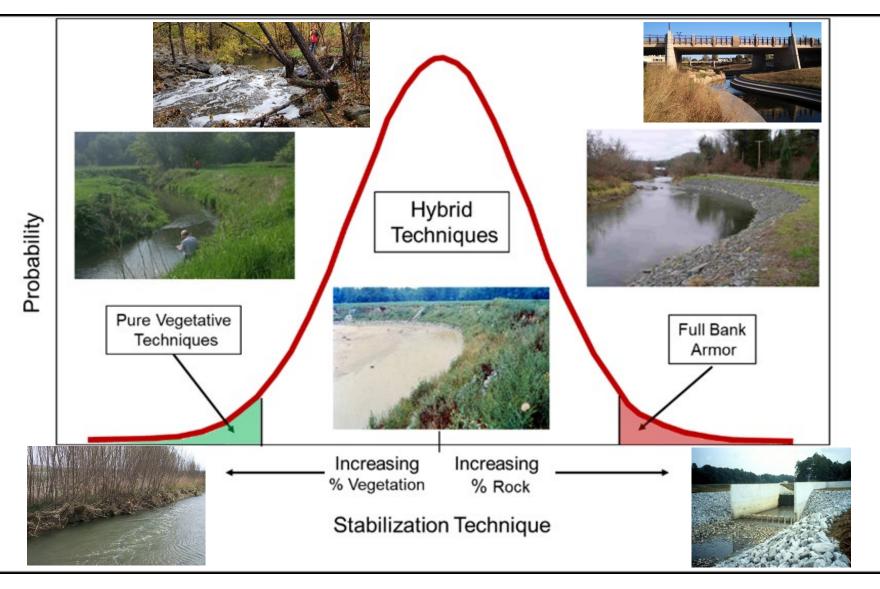
Performance Factors

-type of practice determines hydrologic loading -practice determines options for improved hazard mitigation, erosion control, and streambed and bank stability -collaboration with stakeholders and other Federal agencies -sediment management options

Watershed Treatments

Benefits/Processes

-naturalization of hydrologic watershed regimes -reduced navigational maintenance -reduction in O&M costs -increased recreational, cultural, and educational opportunities -reduced frequency of maintenance and repair on levee and restoration projects


Performance Factors

-watershed management options determine effects on hydrologic loading -practice options for improved hazard mitigation, upland erosion control, and groundwater recharge -sediment management options -collaboration with stakeholders

-collaboration with stakeholde and other Federal agencies

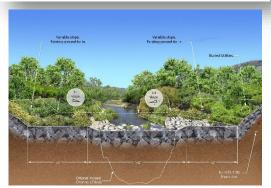
NNBF APPROACH

2/19/2025 • Engineer Research and Development Center

NNBF AND NATURAL MATERIALS

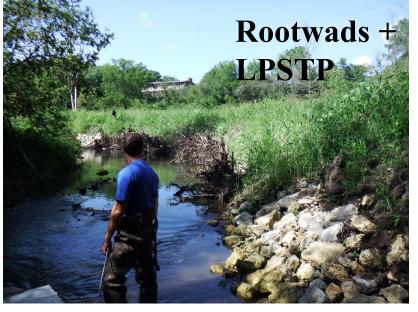
National Large Wood Manual

Assessment, Planning, Design, and Maintenance of Large Wood in Fluvial Ecosystems: Restoring Process, Function, and Structure

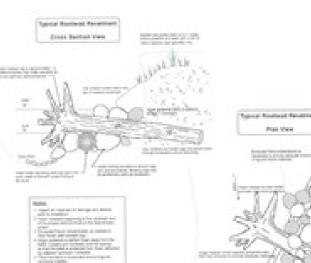

January 2016

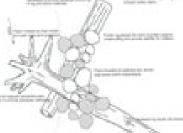
Engineering With Nature

Using **Native Plant** Communities



www.engineeringwithnature.org


US Army Corps of Engineers • Engineer Research and Development Center


VEGETATION & LIMITED TOE-PROTECTION TO RESTORE NATURAL PROCESSES

TOE PROTECTION TO RESTORE NATURAL PROCESSES

RE-DIRECTIVE AND BANK ALTS TO RESTORE NATURAL PROCESSES

Picture 29: The photo is taken standing on the bridge facing downstream after construction in May 2001.

ers • Engineer Research and Development Center

GRADE CONTROL TO RESTORE NATURAL PROCESSES TO DEGRADING CHANNELS

Upstream channel illustrates what reaches downstream of culverts looked like prior to degradation.

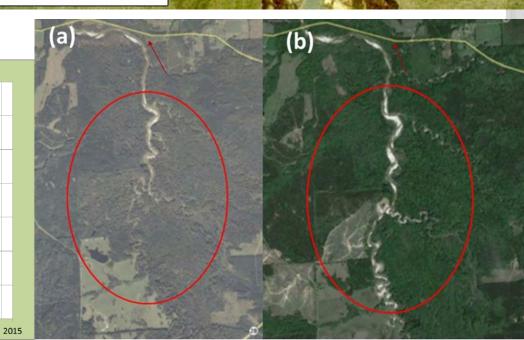
> Road Culverts temporarily stopped channel degrading upstream but were not constructed for that purpose.

Car body illustrating scale of channel degradation within watershed. Road Culverts temporarily stopped channel degrading upstream but were not constructed for that purpose.

UNCLASSIFIED

1995

2000


2005

2010

1980

1985

1990

GRADE CONTROL TO RESTORE NATURAL PROCESSES



GRADE CONTROL TO RESTORE NATURAL PROCESSES 20

 ACTUAL STREAM BOTTOM OF CL FLOW CHARMED, AFTER ANTURA STREAM BERMINISTREAM

GRADE CONTROL TO RESTORE NATURAL PROCESSES

Beaver Dam Analogy (BDA) Structures

WILDFIRE RECOVERY: GRADE CONTROL TO RESTORE NATURAL PROCESSES

WILDFIRE RECOVERY: GRADE CONTROL TO RESTORE NATURAL PROCESSES

Stage Zero Restoration

US Army Corps of Engineers • Engineer Research and Development Center

WILDFIRE RECOVERY: TO RESTORE NATURAL PROCESSES

- Wetland & Erosion
 Control
- Bottomless Culvert
- Traditional Ecological Knowledge (TEK)

EWN FY22 Wildfire Recovery (ERT 21-10)

tions for a safer, better world

WILDFIRE RECOVERY: RESTORE NATURAL PROCESSES

Wood, rock, vegetative structures
Rock onsite
Combination

BUILDING STRONG®

RESERVOIR SUSTAINABILITY: TO RESTORE SHORELINE STABILITY

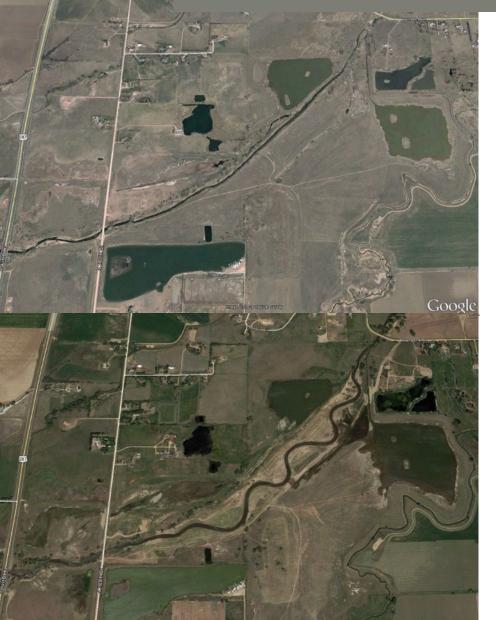
Engineers • Engineer Research and Development Center

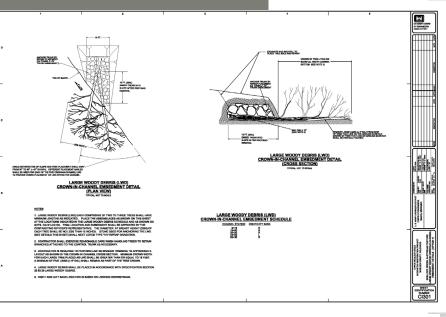
RESERVOIR SUSTAINABILITY: TO RESTORE SHORELINE STABILITY

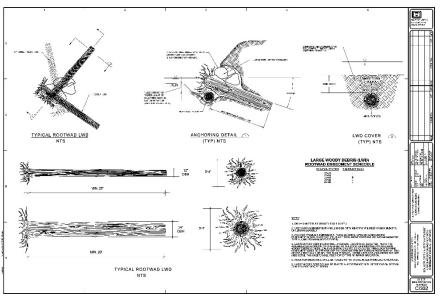
UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED Natural Bank Protection (Soil-Filled Riprap): To Restore Natural Processes




Floodplain Benching & Re-connection: To Restore Natural Processes


Floodplain Restoration Advantages

Access of flows (Hydraulically reconnected) Areas for sediment deposition Dissipates flow energy Nutrient Recyclying Reconnection (groundwater recharge) High quality riparian corridor: (>70% of all terrestrial species) Riparian corridor: to be fully functional need a large buffer width Aquatic species (flood flows)

FLOODPLAIN RECONNECTION BOULDER CREEK PROJECT

BOULDER CREEK PROJECT

AD TO RESTORE NATURAL PROCESSES

US Army Corps of Engineers • Engineer Research and Development Center

TNC-Nachusa Grasslands Wetland Restoration Site Map Ogle County, Illinois

AM: ECOSYSTEM RESTORATION NATURAL PROCESSES

TNC - Nachusa Wetlands

TNC - Nachusa Wetlands

FUTURE FOCUS OF EWN-NNBF APPROACHES ERDC-CHL RIVER ENGINEERNG

- Expand the "vision" to diversify project benefits
- Increase collaboration and crosssector partnerships
- Commit to innovation
- Ensure understanding of underlying restoration principles.
- Document the value created
- Coordinate communication across partnering organizations for maximum impact
- Provide technical assistance & R&D-Water Resource Issues. (WOTS-DOTS-WRAP-other District, Military, and Sponsor request).

US Army Corps of Engineers • Engineer Research and Development Center

Questions

https://ewn.erdc.dren.mil/

BUILDING STRONG®

Innovative solutions for a safer, better world

References

- Bridges, T., P. Wagner, K. Burks-Copes, J.R. Vietri. (2015) <u>Natural & Nature-Based Features [Brochure]</u>. U.S. Army Engineer Research and Development Center, Vicksburg, MS. (PDF)
- Burgess-Gamble, L., C. Haring, R. Schielen, J. Guy, D. Ramsbottom, B. Woods Ballard, M. Roca Collell, R. Glover, and F. Van Zoest, 2021. "Chapter 18: Description of Fluvial NNBF." International Guidelines on Natural and Nature-Based Features for Flood Risk Management." Edited by T.S. Bridges, J.K. King, J.D. Simm, M.W. Beck, G. Collins, Q. Lodder, and R.K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center. https://issuu.com/poweroferdc/docs/nnbf-guidelines-2021/800
- Burgess-Gamble, R. Schielen, L., C. Haring, J. Guy, R. Glover, R. Mandel, B. Woods Ballard, and M. Roca Collell, 2021. <u>"Chapter 19: Fluvial NNBF Case Studies." International Guidelines on Natural and Nature-Based Features for Flood</u> <u>Risk Management.</u> Edited by T.S. Bridges, J.K. King, J.D. Simm, M.W. Beck, G. Collins, Q. Lodder, and R.K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center. <u>https://issuu.com/poweroferdc/docs/nnbf-guidelines-2021/800</u>
- Engineering With Nature, U.S. Army Engineer Research and Development Center. https://ewn.erdc.dren.mil/
- Federal Interagency Stream Restoration Working Group, 1998. <u>Stream Corridor Restoration: Principles, Processes, and</u> <u>Practices.</u> National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia
- Haring, C., R. Schielen, J. Guy, and L. Burgess-Gamble, 2021. "Chapter 15: Introduction to Fluvial Systems: Key <u>Themes, Objectives, Gaps, and Future Directions</u>" International Guidelines on Natural and Nature-Based Features <u>for Flood Risk Management.</u> Edited by T.S. Bridges, J.K. King, J.D. Simm, M.W. Beck, G. Collins, Q. Lodder, and R.K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center. <u>https://issuu.com/poweroferdc/docs/nnbf-guidelines-2021/800</u>
- Haring, C., R. Schielen, J. Guy, L. Burgess-Gamble, and B. Bledsoe, 2021. <u>"Chapter 16: Fluvial Systems and Flood Risk Management." International Guidelines on Natural and Nature-Based Features for Flood Risk Management.</u> Edited by T.S. Bridges, J.K. King, J.D. Simm, M.W. Beck, G. Collins, Q. Lodder, and R.K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center. <u>https://issuu.com/poweroferdc/docs/nnbf-guidelines-2021/800</u>
- Schielen, R., C. Haring, J. Guy, L. Burgess-Gamble, B. Bledsoe, and R. Mandel, 2021. "Chapter 17: Benefits and Challenges in the Application of NNBF in Fluvial Systems" International Guidelines on Natural and Nature-Based Features for Flood Risk Management. Edited by T.S. Bridges, J.K. King, J.D. Simm, M.W. Beck, G. Collins, Q. Lodder, and R.K. Mohan. Vicksburg, MS: U.S. Army Engineer Research and Development Center. https://issuu.com/poweroferdc/docs/nnbf-guidelines-2021/800