Search
Close this search box.
Active Research project

Sustainable, Tunable, and Bioreceptive Cementitious Materials for EWN® Infrastructure Solutions

June 20, 2024
PROJECT UPDATE:
Research Update: Innovative Sensor Deployment to Save New Jersey Wetlands
June 11, 2024
PROJECT UPDATE:
Network for Engineering With Nature (N-EWN) Inaugural Partner’s Symposium
May 23, 2024
PROJECT UPDATE:
New Book Showcases Nature-Based Solutions Around the World
April 25, 2024
PROJECT UPDATE:
Advancing Nature-Based Solutions: A Key Focus for US Army Corps of Engineers (USACE)
April 24, 2024
PROJECT UPDATE:
Surveying Beneficial Use of Dredged Material Placement Sites at the Philadelphia District
April 17, 2024
PROJECT UPDATE:
Signed: A New Memorandum of Understanding with the National Institute of Standards and Technology to Collaboratively Quantify Nature’s Benefits for Human Well-Being
April 2, 2024
PROJECT UPDATE:
EWN Podcast reaches 50k download milestone!!!
April 1, 2024
PROJECT UPDATE:
Join ERDC Live this week with EWN's Dr. King & Dr. Tritinger
March 26, 2024
PROJECT UPDATE:
National Nature Assessment Chapter Leadership Team Announced
March 25, 2024
PROJECT UPDATE:
EWN Bolsters Army Resilience Efforts

Project Information

This project proposes to develop innovative concretes with environmentally sustainable alternative binders that deliver excellent chemical and mechanical resilience with significantly increased biological compatibility for freshwater and marine shoreline environments. Laboratory evaluations of four alternative binding materials will assess their mechanical and chemical durability, referenced to conventional portland cement concrete, and correlate fine-scale analyses of microstructures to describe cementing phases, alkalinity, pore structures, and substrate surfaces. Based on these results, candidate concretes will be selected for field studies to evaluate in situ durability and bioreceptivity through establishing novel, standardized characterization methods, which will serve as a benchmark for the broader concrete community of practice. Tunable innovations in materials, substrates, and structural configurations will create tailored solutions for different environmental needs. These will produce long-lasting shoreline and coastline reinforcements that create favorable environments for plant, invertebrate, and fish communities, in contrast to hard, armored structures with conventional, steel-reinforced, portland cement concrete that require costly maintenance/replacement and disrupt coastal ecosystems. Through field demonstrations of durable and bioreceptive candidate concretes, and development of a laboratory reference framework for evaluation of future innovative concretes, we will fulfill a growing need for ecologically sustainable concrete structures for restoration, repair, and new construction within our Nation’s shorelines and aging waterways to replace aging materials and mitigate rapid hydrological changes from sea level rise and climate instabilities.

Schematic diagram showing bioreceptivity progression (seconds to months) on a concrete substrate. Adapted from [10].
Images from Buffalo District breakwater restoration projects. A) Deteriorating concrete cap at Sturgeon Bay. B) Wave erosion is wearing the foot blocks on the west corner of the detached breakwater at Sturgeon Bay. C) Southern breakwater needs stone placement at certain locations at Manitowoc Bay. (Courtesy of Robert Sezonov, USACE Chicago District).

Products

Presentations

This poster will be presented at the Gordon Research Conference: 2024 Advanced Material...

Point of Contact

Senior Research Geologist, GSL

Facebook
Twitter
LinkedIn
Email

Research News

Scotch Bonnet, NJ – Researchers from the U.S. Army Engineer Research and Development Center’s Coastal and...
Loading More

All Research

All Research Projects