Nature-based solutions (NbS) offer an innovative approach to reducing risks from natural hazards, aligning ecological processes with engineering objectives. However, successfully scaling NbS from site-specific interventions to systems-level applications remains a challenge. This paper examines an Engineering With Nature® (EWN®) case study to explore how NbS can be integrated into broader, systems-based engineering practices, demonstrating the transition from conceptual design to wide-scale, regional implementation.
One such case study is Deer Island, located off the coast of Mississippi, USA, where EWN approaches stabilized shorelines and restored critical habitats. The project utilized natural sediment transport processes to rebuild marsh and dune systems, enhancing the island’s resilience to storm surges and erosion. Through careful integration of natural and engineered systems, Deer Island serves as a model for how NbS can mitigate risks at both local and regional scales, increasing the ability to recover from a natural disaster and overall ecological health. In particular, the case study highlights the benefit of designing for multiple integrated ecosystem components to deliver a diverse array of ecological functions, goods, and services.
The paper further underscores the importance of interdisciplinary collaboration, highlighting the role of landscape architects in creating multifunctional designs that incorporate natural features and processes. These designs enhance ecosystem services while addressing societal needs, providing a blueprint for how when combined landscape architecture, science, and engineering can synergize in NbS projects. By synthesizing lessons from the EWN and emphasizing the need for cross-sector collaboration, this paper outlines pathways to scale NbS from localized efforts to comprehensive strategies that reduce coastal storm risk.